【題目】為了提高農(nóng)田利用效益,某地由每年種植雙季稻改為先養(yǎng)殖小龍蝦再種植一季水稻的“蝦稻”輪作模式.某農(nóng)戶有農(nóng)田20畝,去年開始實施“蝦稻”輪作,去年出售小龍蝦每千克獲得的利潤為32元(利潤=售價﹣成本).由于開發(fā)成本下降和市場供求關(guān)系變化,今年每千克小龍蝦的養(yǎng)殖成本下降25%,售價下降10%,出售小龍蝦每千克獲得利潤為30元.
(1)求去年每千克小龍蝦的養(yǎng)殖成本與售價;
(2)該農(nóng)戶今年每畝農(nóng)田收獲小龍蝦100千克,若今年的水稻種植成本為600元/畝,稻谷售價為25元/千克,該農(nóng)戶估計今年可獲得“蝦稻”輪作收入不少于8萬元,則稻谷的畝產(chǎn)量至少會達(dá)到多少千克?
【答案】(1)去年每千克小龍蝦的養(yǎng)殖成本與售價分別為8元、40元;(2)稻谷的畝產(chǎn)量至少會達(dá)到640千克.
【解析】
(1)設(shè)去年每千克小龍蝦的養(yǎng)殖成本與售價分別為x元、y元,由題意列出方程組,解方程組即可;
(2)設(shè)今年稻谷的畝產(chǎn)量為z千克,由題意列出不等式,就不等式即可.
(1)設(shè)去年每千克小龍蝦的養(yǎng)殖成本與售價分別為x元、y元,
由題意得:,
解得:,
答:去年每千克小龍蝦的養(yǎng)殖成本與售價分別為8元、40元;
(2)設(shè)今年稻谷的畝產(chǎn)量為z千克,
由題意得:20×100×30+20×2.5z﹣20×600≥80000,
解得:z≥640;
答:稻谷的畝產(chǎn)量至少會達(dá)到640千克.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了抓住夏季來臨,襯衫熱銷的契機(jī),決定用46000元購進(jìn)、、三種品牌的襯衫共300件,并且購進(jìn)的每一種襯衫的數(shù)量都不少于90件.設(shè)購進(jìn)種型號的襯衣件,購進(jìn)種型號的襯衣件,三種品牌的襯衫的進(jìn)價和售價如下表所示:
型號 | |||
進(jìn)價(元/件) | 100 | 200 | 150 |
售價(元/件) | 200 | 350 | 300 |
(Ⅰ)直接用含、的代數(shù)式表示購進(jìn)種型號襯衣的件數(shù),其結(jié)果可表示為______;
(Ⅱ)求與之間的函數(shù)關(guān)系式;
(Ⅲ)如果該商場能夠?qū)①忂M(jìn)的襯衫全部售出,但在銷售這些襯衫的過程中還需要另外支出各種費(fèi)用共計1000元.
①求利潤(元)與(件)之間的函數(shù)關(guān)系式;
②求商場能夠獲得的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于),兩點(diǎn),與軸交于點(diǎn),連接.
(1)求該拋物線的解析式,并寫出它的對稱軸;
(2)點(diǎn)為拋物線對稱軸上一點(diǎn),連接,若,求點(diǎn)的坐標(biāo);
(3)已知,若是拋物線上一個動點(diǎn)(其中),連接,求面積的最大值及此時點(diǎn)的坐標(biāo).
(4)若點(diǎn)為拋物線對稱軸上一點(diǎn),拋物線上是否存在點(diǎn),使得以為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).
(1)點(diǎn)的坐標(biāo)為__________,點(diǎn)的坐標(biāo)為__________,線段的長為__________,拋物線的解析式為__________.
(2)點(diǎn)是線段下方拋物線上的一個動點(diǎn).
①如果在軸上存在點(diǎn),使得以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形.求點(diǎn)的坐標(biāo).
②如圖2,過點(diǎn)作交線段于點(diǎn),過點(diǎn)作直線交于點(diǎn),交軸于點(diǎn),記,求關(guān)于的函數(shù)解析式;當(dāng)取和時,試比較的對應(yīng)函數(shù)值和的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正確的是( )
A.①②B.①④C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象在第一象限交于點(diǎn)A(3,2),與y軸的負(fù)半軸交于點(diǎn)B,且OB=4.
(1)求函數(shù)和y=kx+b的解析式;
(2)結(jié)合圖象直接寫出不等式組0<<kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線相交于點(diǎn)O,且點(diǎn)O是BD的中點(diǎn),若AB=AD=5,BD=8,∠ABD=∠CDB,則四邊形ABCD的面積為( 。
A.40B.24C.20D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一塊斜邊長30cm的直角三角形木板(Rt△ACB)上截取一個正方形CDEF,點(diǎn)D在邊BC上,點(diǎn)E在斜邊AB上,點(diǎn)F在邊AC上,若AF:AC=1:3,則這塊木板截取正方形CDEF后,剩余部分的面積為( )
A. 100cm2B. 150cm2C. 170cm2D. 200cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)今“微信運(yùn)動”被越來越多的人關(guān)注和喜愛,某興趣小組隨機(jī)調(diào)查了我市50名教師某日“微信運(yùn)動”中的步數(shù)情況進(jìn)行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表(不完整):
步數(shù) | 頻數(shù) | 頻率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
請根據(jù)以上信息,解答下列問題:
(1)寫出a,b,c,d的值并補(bǔ)全頻數(shù)分布直方圖;
(2)本市約有37800名教師,用調(diào)查的樣本數(shù)據(jù)估計日行走步數(shù)超過12000步(包含12000步)的教師有多少名?
(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com