【題目】如圖,長(zhǎng)方形ABCD中,AB6,第1次平移將長(zhǎng)方形ABCD沿AB的方向向右平移5個(gè)單位,得到長(zhǎng)方形A1B1C1D1,第2次平移將長(zhǎng)方形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位,得到長(zhǎng)方形A2B2C2D2,,以此類推,第n次平移將長(zhǎng)方形An1Bn1Cn1Dn1沿An1Bn1的方向向右平移5個(gè)單位,得到長(zhǎng)方形AnBnCnDnn2),則ABn長(zhǎng)為

A. 5n6B. 5n1C. 5n4D. 5n3

【答案】A

【解析】

每次平移5個(gè)單位,n次平移5n個(gè)單位,加上AB的長(zhǎng)即為ABn的長(zhǎng).

每次平移5個(gè)單位,n次平移5n個(gè)單位,即BN的長(zhǎng)為5n,加上AB的長(zhǎng)即為ABn的長(zhǎng).

ABn=5n+AB=5n+6,

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC頂點(diǎn)的坐標(biāo)分別是A(﹣13)、B(﹣5,1)、C(﹣2,﹣2).

1)畫出ABC關(guān)于y軸對(duì)稱的ABC,并寫出ABC各頂點(diǎn)的坐標(biāo);

2)求出ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD是△ABC的角平分線,⊙O經(jīng)過(guò)A、B、D三點(diǎn),過(guò)點(diǎn)B作BE∥AD,交⊙O于點(diǎn)E,連接ED.

(1)求證:ED∥AC;
(2)連接AE,試證明:ABCD=AEAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)半徑為r(r<1)的圓形紙片在邊長(zhǎng)為10的正六邊形內(nèi)任意運(yùn)動(dòng),則在該六邊形內(nèi),這個(gè)圓形紙片不能接觸到的部分的面積是( )

A.πr2
B.
C. r2
D. r2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(6,c)三點(diǎn),其中a,b,c滿足關(guān)系式|a-2|+(b-3)2+=0,

(1)求A.B.C的坐標(biāo);

(2)求三角形ABC的面積;

(3)在y軸上是否存在點(diǎn)P,使三角形APC的面積與三角形ABC的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點(diǎn)D.

(1)如圖①,當(dāng)直線l與⊙O相切于點(diǎn)C時(shí),求證:AC平分∠DAB;
(2)如圖②,當(dāng)直線l與⊙O相交于點(diǎn)E,F(xiàn)時(shí),求證:∠DAE=∠BAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠B90°,∠BCD135°,且AB3cm,BC7cm,CD5cm,點(diǎn)M從點(diǎn)A出發(fā)沿折線ABCD運(yùn)動(dòng)到點(diǎn)D,且在AB上運(yùn)動(dòng)的速度為cm/s,在BC上運(yùn)動(dòng)的速度為1cm/s,在CD上運(yùn)動(dòng)的速度為cm/s,連接AM、DM,當(dāng)點(diǎn)M運(yùn)動(dòng)時(shí)間為_____s)時(shí),ADM是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,在ABC,∠BAC=135°,ABAD,DC=AB+AD,則∠ACB=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若實(shí)數(shù)可以表示成兩個(gè)連續(xù)自然數(shù)的倒數(shù)差,例如,,所以是第1個(gè)“l階倒差數(shù)”倒差數(shù)”,,所以是第2個(gè)“l階倒差數(shù)”,,所以是第3個(gè)“l階倒差數(shù)”……,即,那么我們稱是第個(gè)“l階倒差數(shù)”;同理,那么我們稱為第個(gè)“2階倒差數(shù)”。

(l)判斷 ______(填是或不是)“1階倒差數(shù)”,第5個(gè)“2階倒差數(shù)”是______

(2)均是由兩連續(xù)奇數(shù)組成的“2階倒差數(shù)”,且.求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案