圖1是邊長分別為a和b(a>b)的兩個(gè)等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.
操作與思考:
操作:若將圖1中的△C′DE繞點(diǎn)C按順時(shí)針方向任意旋轉(zhuǎn)一個(gè)角度α,連接AD、BE,如圖2或如圖3;
思考:在圖2和圖3中,線段BE與AD之間的大小關(guān)系是    ;
猜想與發(fā)現(xiàn):
根據(jù)上面的操作和思考過程,請(qǐng)你猜想當(dāng)α為    度時(shí),線段AD的長度最大,當(dāng)α為某個(gè)角度時(shí),線段AD的長度最小,最小是   
【答案】分析:根據(jù)等邊三角形性質(zhì)得出BC=AC,CE=CD,∠BCA=∠ECD=60°,求出∠BCE=∠ACD,根據(jù)SAS證△BCE≌△ACD,推出BE=AD即可;根據(jù)題意得出當(dāng)D在AC延長線時(shí),AD有最大值,當(dāng)D在線段AC上時(shí),AD有最小值.
解答:解:在圖2和圖3中,線段BE與AD之間的大小關(guān)系是相等,理由如下:
∵△ABC和△CED是等邊三角形,
∴BC=AC,CE=CD,∠BCA=∠ECD=60°,
∴∠BCA-∠ECA=∠ECD-∠ECA,
即∠BCE=∠ACD,
在△BCE和△ACD中
,
∴△BCE≌△ACD(SAS),
∴BE=AD,
當(dāng)α等于180°時(shí),D在AC的延長線上,線段AD的長度最大,最大值是AC+CD=a+b,根據(jù)圖1可知:當(dāng)α為0°時(shí),線段AD的長度最小,最小是AC-CD=a-b,
故答案為:相等,180,a-b.
點(diǎn)評(píng):本題考查了三角形內(nèi)角和定理,等邊三角形的性質(zhì),全等三角形的性質(zhì)和判定,注意:全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

圖1是邊長分別為4
3
和3的兩個(gè)等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個(gè)單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3);
探究:設(shè)△PQR移動(dòng)的時(shí)間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動(dòng),使頂點(diǎn)C落在C′E′的中點(diǎn),邊BC交D′E′于點(diǎn)M,邊AC交D′C′于點(diǎn)N,設(shè)∠AC C′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請(qǐng)你求出C′N•E′M的值,如果有變化,請(qǐng)你說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圖1是邊長分別為4
3
和3的兩個(gè)等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°得到△CDE,連接AD,BE,CE的延長線交AB于F(圖2).
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論;
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個(gè)單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3).
探究:設(shè)△PQR移動(dòng)的時(shí)間為x秒,△PQR與△AFC重疊部分的面積為y精英家教網(wǎng),求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圖1是邊長分別為4
3
和3的兩個(gè)等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個(gè)單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3);
請(qǐng)問:經(jīng)過多少時(shí)間,△PQR與△ABC重疊部分的面積恰好等于
7
3
4
?
(3)操作:圖1中△C′D′E′固定,將△ABC移動(dòng),使頂點(diǎn)C落在C′E′的中點(diǎn),邊BC交D′E′于點(diǎn)M,邊AC交D′C′于點(diǎn)N,設(shè)
∠AC C′=α(30°<α<90,圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請(qǐng)你求出C′N•E′M的值,如果有變化,請(qǐng)你說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•攀枝花)圖1是邊長分別為a和b(a>b)的兩個(gè)等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.
操作與思考:
操作:若將圖1中的△C′DE繞點(diǎn)C按順時(shí)針方向任意旋轉(zhuǎn)一個(gè)角度α,連接AD、BE,如圖2或如圖3;
思考:在圖2和圖3中,線段BE與AD之間的大小關(guān)系是
相等
相等
;
猜想與發(fā)現(xiàn):
根據(jù)上面的操作和思考過程,請(qǐng)你猜想當(dāng)α為
180
180
度時(shí),線段AD的長度最大,當(dāng)α為某個(gè)角度時(shí),線段AD的長度最小,最小是
a-b
a-b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1是邊長分別為4
3
和3的兩個(gè)等邊三角形紙片ABC和CDE疊放在一起.
(1)固定△ABC,將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°得到△CDE,連接AD、BE、CE的延長線交AB于點(diǎn)F(圖2),線段BE與AD之間有怎樣的大小關(guān)系?證明你的結(jié)論;
(2)固定△CDE,將△ABC移動(dòng),使頂點(diǎn)C落在CE的中點(diǎn)G,邊BG交DE于點(diǎn)M,邊AG交DC于點(diǎn)N,求證:CN•EM=EG•CG;
(3)將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個(gè)單位的速度平移,平移后的△CDE設(shè)為△PQR(圖4);探究:設(shè)△PQR移動(dòng)時(shí)間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案