【題目】如圖,在△ABC中,,CD平分交AB于點(diǎn)D,將△CDB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△CEF的位置,點(diǎn)F在AC上.
(1)△CDB旋轉(zhuǎn)了________度;
(2)連結(jié)DE,判斷DE與BC的位置關(guān)系,并說(shuō)明理由.
【答案】90
【解析】(1)由旋轉(zhuǎn)的性質(zhì)可得結(jié)論;
(2)由角平分線(xiàn)的定義得到∠BCD=∠ACD=45°.由旋轉(zhuǎn)的性質(zhì)得到CD=CE,∠BCD=∠ECA=45°,故∠DCE=90°,∠CED=45°,∠ECD=45°,得到∠DCB=∠EDC,由內(nèi)錯(cuò)角相等,兩直線(xiàn)平行即可得到結(jié)論.
(1)由旋轉(zhuǎn)的性質(zhì)可知:旋轉(zhuǎn)角為∠BCA=90°.故答案為:90°.
(2)DE//BC.理由如下:
∵CD平分∠ACD, ∠ACB=90°,
∴∠BCD=∠ACD=45°.
又∵ΔCDB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到ΔCEF,
∴CD=CE,∠BCD=∠ECA=45°;
∴∠DCE=90°,∠CED=45°;
∴∠ECD=45°,
∴∠DCB=∠EDC,
∴DE//BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=(x-2)2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過(guò)點(diǎn)B作BC∥x軸,交拋物線(xiàn)于點(diǎn)C,過(guò)點(diǎn)A作AD∥y軸,交BC于點(diǎn)D,點(diǎn)P在BC下方的拋物線(xiàn)上(不與點(diǎn)B,C重合),連接PC,PD,設(shè)△PCD的面積為S,則S的最大值是________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線(xiàn)段AB的端點(diǎn)在邊長(zhǎng)為1的小正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線(xiàn)段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線(xiàn)段AC.
⑴請(qǐng)你在所給的網(wǎng)格中畫(huà)出線(xiàn)段AC及點(diǎn)B經(jīng)過(guò)的路徑;
⑵若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的坐標(biāo)為(-2, -1),則點(diǎn)C的坐標(biāo)為 ;
⑶線(xiàn)段AB在旋轉(zhuǎn)到線(xiàn)段AC的過(guò)程中,線(xiàn)段AB掃過(guò)的區(qū)域的面積為 ;
⑷若有一張與⑶中所說(shuō)的區(qū)域形狀相同的紙片,將它圍成一個(gè)幾何體的側(cè)面,則該幾何體底面圓的半徑長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AD=8cm,BC=12cm,M是BC上一點(diǎn),且BM=9cm,點(diǎn)E從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)F從點(diǎn)C出發(fā),以3cm/s的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也隨之停止,設(shè)運(yùn)動(dòng)時(shí)間為t,則當(dāng)以A、M、E、F為頂點(diǎn)的四邊形是平行四邊形時(shí),t=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結(jié)論的序號(hào)是( 。
A.①②③⑤B.①③④C.①②③④D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的中線(xiàn),tanB=,cosC=,AC=
(1)求BC的長(zhǎng);
(2)作出△ABC的外接圓(尺規(guī)作圖,保留痕跡,不寫(xiě)作法),并求外接圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn) 與 軸交于A、C兩點(diǎn),與 軸交于點(diǎn)B,在拋物線(xiàn)的對(duì)稱(chēng)軸上找一點(diǎn)Q,使△ABQ成為等腰三角形,則Q點(diǎn)的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD繞其右下角的頂點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90°至圖①位置,繼續(xù)繞右下角的頂點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90°至圖②位置,以此類(lèi)推,這樣連續(xù)旋轉(zhuǎn)2017次.若AB=4,AD=3,則頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑總長(zhǎng)為( )
A. 2017π B. 2034π C. 3024π D. 3026π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MON=45°,線(xiàn)段AB在射線(xiàn)ON上運(yùn)動(dòng),AB=2.
(1)如圖1,已知OA=AB,AC=BC,∠ACB=90°,點(diǎn)C在∠MON內(nèi).
①求證:以點(diǎn)C為圓心,CA的半徑的圓與射線(xiàn)OM相切(切點(diǎn)記為點(diǎn)P);
②∠APB的大小為 .
(2)如圖2,若射線(xiàn)OM上存在點(diǎn)Q,使得∠AQB=30度,試?yán)脠D2,求A,O兩點(diǎn)之間距離t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com