【題目】高爾基說(shuō):書(shū),是人類(lèi)進(jìn)步的階梯.閱讀可以豐富知識(shí)、拓展視野、充實(shí)生活等諸多益處.為了解學(xué)生的課外閱讀情況,某校隨機(jī)抽查了部分學(xué)生閱讀課外書(shū)冊(cè)數(shù)的情況,并繪制出如下統(tǒng)計(jì)圖,其中條形統(tǒng)計(jì)圖因?yàn)槠茡p丟失了閱讀5冊(cè)書(shū)數(shù)的數(shù)據(jù).

1)求條形圖中丟失的數(shù)據(jù),并寫(xiě)出閱讀書(shū)冊(cè)數(shù)的眾數(shù)和中位數(shù);

2)根據(jù)隨機(jī)抽查的這個(gè)結(jié)果,請(qǐng)估計(jì)該校1200名學(xué)生中課外閱讀5冊(cè)書(shū)的學(xué)生人數(shù);

3)若學(xué)校又補(bǔ)查了部分同學(xué)的課外閱讀情況,得知這部分同學(xué)中課外閱讀最少的是6冊(cè),將補(bǔ)查的情況與之前的數(shù)據(jù)合并后發(fā)現(xiàn)中位數(shù)并沒(méi)有改變,試求最多補(bǔ)查了多少人?

【答案】1)丟失的數(shù)據(jù)是14,閱讀書(shū)冊(cè)數(shù)的眾數(shù)是5,中位數(shù)是5;(2420人;(33人.

【解析】

1)設(shè)閱讀5冊(cè)書(shū)的人數(shù)為,由統(tǒng)計(jì)中的信息列式計(jì)算即可;

2)該校1200名學(xué)生數(shù)課外閱讀5冊(cè)書(shū)的學(xué)生人數(shù)占抽查了學(xué)生的百分比即可得到結(jié)論;

3)設(shè)補(bǔ)查了人,根據(jù)題意列不等式即可得到結(jié)論.

1)設(shè)閱讀5冊(cè)書(shū)的人數(shù)為,由統(tǒng)計(jì)圖可知:

,

條形圖中丟失的數(shù)據(jù)是14,閱讀書(shū)冊(cè)數(shù)的眾數(shù)是5,中位數(shù)是5;

2)該校1200名學(xué)生中課外閱讀5冊(cè)書(shū)的學(xué)生人數(shù)為(人),

答:該校1200名學(xué)生中課外閱讀5冊(cè)書(shū)的學(xué)生人數(shù)是420人;

3)設(shè)補(bǔ)查了人,

根據(jù)題意得,,

,

最多補(bǔ)查了3人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們將能完全覆蓋某平面圖形的最小圓稱(chēng)為該平面圖形的最小覆蓋圓.例如線段AB的最小覆蓋圓就是以線段AB為直徑的圓.

1)請(qǐng)分別作出下圖中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);

2)探究三角形的最小覆蓋圓有何規(guī)律?請(qǐng)寫(xiě)出你所得到的結(jié)論(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑為2O到頂點(diǎn)A的距離為5,點(diǎn)B在⊙O上,點(diǎn)P是線段AB的中點(diǎn),若B在⊙O上運(yùn)動(dòng)一周.

1)點(diǎn)P的運(yùn)動(dòng)路徑是一個(gè)圓;

2ABC始終是一個(gè)等邊三角形,直接寫(xiě)出PC長(zhǎng)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,,,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)與點(diǎn)不重合),點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(點(diǎn)與點(diǎn)不重合),連接,過(guò)點(diǎn)的垂線,交射線于點(diǎn)連接.設(shè)

(1)當(dāng)時(shí),求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;

(2)(1)的條件下,取線段的中點(diǎn),連接,,的長(zhǎng);

(3)如果動(dòng)點(diǎn)在運(yùn)動(dòng)時(shí),始終滿足條件那么請(qǐng)?zhí)骄浚?/span>的周長(zhǎng)是否隨著動(dòng)點(diǎn)的運(yùn)動(dòng)而發(fā)生變化?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)在中,,是平面內(nèi)任意一點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)與相等的角度,得到線段,連接.

①如圖①,若是線段上的一點(diǎn),且,則的大小 (度),的長(zhǎng) ;

②如圖②,點(diǎn)延長(zhǎng)線上的一點(diǎn),若內(nèi)部射線上任意一點(diǎn),連接的數(shù)量關(guān)系是什么?的數(shù)量關(guān)系是什么?并分別給予證明:

2)如圖③,在中,,,上的任意一點(diǎn),連接,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到線段,連接,求線段長(zhǎng)度的最小值(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD中,AB2BCm,點(diǎn)E是邊BC上一點(diǎn),BE1,連接AE

1)沿AE翻折ABE使點(diǎn)B落在點(diǎn)F處,

①連接CF,若CFAE,求m的值;

②連接DF,若DF,求m的取值范圍.

2ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得AB1E1,點(diǎn)E1落在邊AD上時(shí)旋轉(zhuǎn)停止.若點(diǎn)B1落在矩形對(duì)角線AC上,且點(diǎn)B1AD的距離小于時(shí),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求二次函數(shù)的圖象如圖所示,其對(duì)稱(chēng)軸為直線,與軸的交點(diǎn)為,其中,有下列結(jié)論:①;②;③;④;⑤;其中,正確的結(jié)論有(

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD沿GH對(duì)折,點(diǎn)C落在Q處,點(diǎn)D落在AB邊上E處,EQBC相交于F,若AD8 cm,AB6 cm,AE4cm,則EBF的周長(zhǎng)是______________ cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC在平面直角坐標(biāo)系中,三個(gè)頂點(diǎn)的坐標(biāo)分別為A04),B2,2),C4,6)(正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1).

1)畫(huà)出ABC向下平移5個(gè)單位長(zhǎng)度得到的A1B1C1,并寫(xiě)出點(diǎn)B1的坐標(biāo);

2)以點(diǎn)O為位似中心,在第三象限內(nèi)畫(huà)出A2B2C2,使A2B2C2ABC位似,且相似比為12,直接寫(xiě)出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案