【題目】點P是正方形ABCD邊AB上一點(不與A,B重合),連接PD并將線段PD繞點P順時針旋轉90°,得到線段PE,連接BE,則∠CBE等于 .
【答案】45°
【解析】
試題在AD上取一點F,使DF=BP,連接PF,由正方形的性質就可以得出△DFP≌△PBE,就可以得出∠DFP=∠PBE,根據AP=AF就可以得出∠DFP的值,就可以求出∠CBE的值.
解:在AD上取一點F,使DF=BP,連接PF,
∵四邊形ABCD是正方形,
∴AD=AB,∠A=∠ABC=90°.
∴AD﹣DF=AB﹣BP,∠ADP+∠APD=90°,
∴AF=AP.
∴∠AFP=∠APF=45°,
∴∠DFP=135°.
∵∠DPE=90°
∴∠APD+∠BPE=90°.
∴∠ADP=∠BPE.
在△DFP和△PBE中,
,
∴△DFP≌△PBE(SAS),
∴∠DFP=∠PBE,
∴∠PBE=135°,
∴∠EBC=135°﹣90°=45°.
故答案為:45°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校“綜合實踐”社團,計劃利用長的柵欄材料,一邊靠原有舊墻圍成如圖所示的兩個矩形試驗田,墻的長度為.
(1)能否圍成總面積為的試驗田?若能,求出的長度;若不能,說明理由;
(2)能否圍成總面積為的試驗田?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點P到圖形Ω(可以是線段、三角形、圓或不規(guī)則圖形等)的距離是指:點P與圖形Ω中所有點連接的線段中最短線段的長度.如圖①中的兩個虛線段PQ的長度都表示點P到圖形Ω的距離.
如圖②,在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為,點P從原點出發(fā),以每秒1個單位長度的速度向x軸的正方向運動了t秒.
(1)當t=0時,求點P到△ABC的距離;
(2)當點P到△ABC的距離等于線段AP的長度時,求t的范圍;
(3)當點P到△ABC的距離大于時,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩地之間有一座山,汽車原來從A地到B地經過C地沿折線A→C→B行駛,現(xiàn)開通隧道后,汽車直接沿直線AB行駛.已知AC=10千米,∠A=30°,∠B=45°.則隧道開通后,汽車從A地到B地比原來少走多少千米?(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了開展“陽光體育運動”,計劃購買籃球和足球.已知購買20個籃球和40個足球的總金額為4600元;購買30個籃球和50個足球的總金額為6100元.
(1)每個籃球、每個足球的價格分別為多少元?
(2)若該校購買籃球和足球共60個,且購買籃球的總金額不超過購買足球的總金額,則該校最多可購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個自然數(shù)從高位到個位是由一個數(shù)字或幾個數(shù)字重復出現(xiàn)組成的,那么我們把這樣的自然數(shù)叫做循環(huán)數(shù),重復的一個或幾個數(shù)字稱為“循環(huán)節(jié)”,我們把“循環(huán)節(jié)”的數(shù)字個數(shù)叫做循環(huán)節(jié)的階數(shù).例如:525252,它由“52”依次重復出現(xiàn)組成,所以525252是循環(huán)數(shù),它是2階6位循環(huán)數(shù).再如:77,是1階2位循環(huán)數(shù),135135135是3階9位循環(huán)數(shù).
(1)請直接寫出1個2階4位循環(huán)數(shù) ,并證明對于任意一個2階4位循環(huán)數(shù),若交換其循環(huán)節(jié)的數(shù)字得到一個新的4位數(shù),則該新數(shù)和原數(shù)的差能夠被9整除.
(2)已知一個能被9整除的2階4位數(shù).設循環(huán)節(jié)為ab,且滿足a﹣2b為非負偶數(shù),求這個4位循環(huán)數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=(m﹣2)x2+2mx+m+3與x軸有兩個交點.
(1)求m的取值范圍;
(2)當m取滿足條件的最大整數(shù)時,求拋物線與x軸有兩個交點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,已知△ABC三個頂點的坐標分別為A(﹣4,0),B(﹣3,﹣3),C(﹣1,﹣3).
(1)畫出△ABC關于x軸對稱的△ADE(其中點B,C的對稱點分別為點D、E);
(2)畫出△ABC關于原點成中心對稱的△FGH(其中A、B、C的對稱點分別為點F,G,H).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com