【題目】如圖,一張三角形紙片ABC,其中,,現小林將紙片做三次折疊:第一次使點A落在C處;將紙片展平做第二次折疊,使點B落在C處;再將紙片展平做第三次折疊,使點A落在B處這三次折疊的折痕長依次記為a,b,c,則a,b,c的大小關系是
A. B. C. D.
【答案】D
【解析】
(1)圖1,根據折疊得:DE是線段AC的垂直平分線,由中位線定理的推論可知:DE是△ABC的中位線,得出DE的長,即a的長;
(2)圖2,同理可得:MN是△ABC的中位線,得出MN的長,即b的長;
(3)圖3,根據折疊得:GH是線段AB的垂直平分線,得出AG的長,再利用兩角對應相等證△ACB∽△AGH,利用比例式可求GH的長,即c的長.
第一次折疊如圖1,折痕為DE,
由折疊得:AE=EC=AC=×4=2,DE⊥AC ,
∵∠ACB=90°,
∴DE∥BC,
∴a=DE=BC=×3=,
第二次折疊如圖2,折痕為MN,
由折疊得:BN=NC=BC=×3=,MN⊥BC.
∵∠ACB=90°,
∴MN∥AC,
∴b=MN=AC=×4=2,
第三次折疊如圖3,折痕為GH,
由勾股定理得:AB==5,
由折疊得:AG=BG=AB=×5=,GH⊥AB,
∴∠AGH=90°,
∵∠A=∠A,∠AGH=∠ACB,
∴△ACB∽△AGH,
∴= ,
∴= ,
∴GH=,即c=,
∵2>,>,
∴b>c>a.
故答案為:D.
科目:初中數學 來源: 題型:
【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購買B商品的件數比購買A商品的件數的2倍少4件,如果需要購買A、B兩種商品的總件數不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,那么該商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別與坐標軸重合,并且點B的坐標為.將該矩形沿OB折疊,使得點A落在點E處,OE與BC的交點為D.
(1)求證:△OBD為等腰三角形;
(2)求點E的坐標;
(3)坐標平面內是否存在一點F,使得以點B,E,F,O為頂點的四邊形是平行四邊形,若存在,請直接寫出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】發(fā)現與探索.
(1)根據小明的解答(圖1)將下列各式因式分解
①a2-12a+20
②(a-1)2-8(a-1)+7
③a2-6ab+5b2
(2)根據小麗的思考(圖2)解決下列問題.
①說明:代數式a2-12a+20的最小值為-16.
②請仿照小麗的思考解釋代數式-(a+1)2+8的最大值為8,并求代數式-a2+12a-8的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=2x+3與y軸交于A點,與反比例函數y= (x>0)的圖象交于點B,過點B作BC⊥x軸于點C,且C點的坐標為(1,0).
(1)求反比例函數的解析式;
(2)點D(a,1)是反比例函數y= (x>0)圖象上的點,在x軸上是否存在點P,使得PB+PD最?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某天早晨,張強從家跑步去體育鍛煉,同時媽媽從體育場晨練結束回家,途中兩人相遇,張強跑到體育場后發(fā)現要下雨,立即按原路返回,遇到媽媽后兩人一起回到家(張強和媽媽始終在同一條筆直的公路上行走).如圖是兩人離家的距離y(米)與張強出發(fā)的時間x(分)之間的函數圖象,根據圖象信息解答下列問題:
(1)求張強返回時的速度;
(2)媽媽比按原速返回提前多少分鐘到家?
(3)請直接寫出張強與媽媽何時相距1000米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠一周計劃每日生產某產品100噸,由于工人實行輪休,每日上班人數不一定相等,實際每日生產量與計劃量相比情況如下表(以計劃量為標準,增加的噸數記為正數,減少的噸數記為負數)
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減/噸 | ﹣1 | +3 | ﹣2 | +4 | +7 | ﹣5 | ﹣10 |
(1)生產量最多的一天比生產量最少的一天多生產多少噸?
(2)本周總生產量是多少噸?比原計劃增加了還是減少了?增減數為多少噸?
(3)若本周總生產的產品全部由35輛貨車一次性裝載運輸離開工廠,則平均每輛貨車大約需裝載多少噸?(結果精確到0.01噸)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,C 為線段 AD 上一點,B 為 CD 的中點,AD=13cm,BD=3cm.
(1)圖中共有 條線段;
(2)求 AC 的長;
(3)若點 E 在線段 AD 上,且 BE=2cm,求 AE 的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com