(2010•西城區(qū)一模)如圖,將直線y=4x沿y軸向下平移后,得到的直線與x軸交于點,與雙曲線交于點B.
(1)求直線AB的解析式;
(2)若點B的縱坐標為m,求k的值(用含有m的式子表示).

【答案】分析:(1)根據(jù)平移的特點,設(shè)直線AB的解析式為y=4x+b,將點A代入得b的值,從而確定直線AB的解析式;
(2)將點B的縱坐標m代入直線AB的解析式,求出橫坐標,最后求得k的值.
解答:解:(1)設(shè)直線AB的解析式為y=4x+b,將點A代入得9+b=0,
解得b=-9,
∴直線AB的解析式為y=4x-9;

(2)把y=m代入y=4x-9得x=
∵點B在雙曲線上,
∴k=xy=•m=
點評:本題主要考查了待定系數(shù)法求一次函數(shù)的解析式.是一道基礎(chǔ)題型,同學們要熟練掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年北京市西城區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實數(shù)量,方程總有實數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對稱;
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實數(shù)范圍內(nèi),對于x的同一個值,這兩個函數(shù)所對應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市文瀾中學中考數(shù)學模擬試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)如圖,在平面直角坐標系xOy中,一次函數(shù)y=x+3的圖象與x軸交于點A,與y軸交于點B,點C的坐標為(3,0),連接BC.
(1)求證:△ABC是等邊三角形;
(2)點P在線段BC的延長線上,連接AP,作AP的垂直平分線,垂足為點D,并與y軸交于點E,分別連接EA、EP.
①若CP=6,直接寫出∠AEP的度數(shù);
②若點P在線段BC的延長線上運動(P不與點C重合),∠AEP的度數(shù)是否變化?若變化,請說明理由;若不變,求出∠AEP的度數(shù);
(3)在(2)的條件下,若點P從C點出發(fā)在BC的延長線上勻速運動,速度為每秒1個單位長度.EC與AP交于點F,設(shè)△AEF的面積為S1,△CFP的面積為S2,y=S1-S2,運動時間為t(t>0)秒時,求y關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市西城區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)如圖,在平面直角坐標系xOy中,一次函數(shù)y=x+3的圖象與x軸交于點A,與y軸交于點B,點C的坐標為(3,0),連接BC.
(1)求證:△ABC是等邊三角形;
(2)點P在線段BC的延長線上,連接AP,作AP的垂直平分線,垂足為點D,并與y軸交于點E,分別連接EA、EP.
①若CP=6,直接寫出∠AEP的度數(shù);
②若點P在線段BC的延長線上運動(P不與點C重合),∠AEP的度數(shù)是否變化?若變化,請說明理由;若不變,求出∠AEP的度數(shù);
(3)在(2)的條件下,若點P從C點出發(fā)在BC的延長線上勻速運動,速度為每秒1個單位長度.EC與AP交于點F,設(shè)△AEF的面積為S1,△CFP的面積為S2,y=S1-S2,運動時間為t(t>0)秒時,求y關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市西城區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)已知:如圖,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4,
求BC的長.

查看答案和解析>>

同步練習冊答案