某市出租車計費方法如圖所示,x(km)表示行駛里程,y(元)表示車費,請根據(jù)圖象回答下面的問題:

(1)出租車的起步價是多少元?當(dāng)x>3時,求y關(guān)于x的函數(shù)關(guān)系式.
(2)若某乘客有一次乘出租車的車費為32元,求這位乘客乘車的里程.
(1)y=2x+2(2)15km
解:(1)由圖象得:出租車的起步價是8元,;。
設(shè)當(dāng)x>3時,y與x的函數(shù)關(guān)系式為y=kx+b,由函數(shù)圖象,得
,解得。
∴y與x的函數(shù)關(guān)系式為:y=2x+2。
(2)當(dāng)y=32時,32=2x+2,解得x=15。
答:這位乘客乘車的里程是15km。
(1)根據(jù)函數(shù)圖象可以得出出租車的起步價是8元,設(shè)當(dāng)x>3時,y與x的函數(shù)關(guān)系式為y=kx+b,運用待定系數(shù)法就可以求出結(jié)論。
(2)將y=32代入(1)的解析式就可以求出x的值。 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于兩點,直線分別交軸、軸于兩點.

(1)求上述反比例函數(shù)和一次函數(shù)的解析式;
(2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=3x﹣4與函數(shù)y=2x+3的交點的坐標(biāo)是(  )
A.(5,6)B.(7,﹣7)C.(﹣7,﹣17)D.(7,17)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象在同一平面直角坐標(biāo)系內(nèi)的交點的個數(shù)是(    )
A.1個B.2個C.3個D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,A點的坐標(biāo)為(3,0),以O(shè)A為邊作等邊三角形OAB,點B在第一象限,過點B作AB的垂線交x軸于點C.動點P從O點出發(fā)沿OC向C點運動,動點Q從B點出發(fā)沿BA向A點運動,P,Q兩點同時出發(fā),速度均為1個單位/秒。設(shè)運動時間為t秒.

(1)求線段BC的長;
(2)連接PQ交線段OB于點E,過點E作x軸的平行線交線段BC于點F。設(shè)線段EF的長為m,求m與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍:
(3)在(2)的條件下,將△BEF繞點B逆時針旋轉(zhuǎn)得到△BE′F′,使點E的對應(yīng)點E′落在線段AB上,點F的對應(yīng)點是F′,E′F′交x軸于點G,連接PF、QG,當(dāng)t為何值時,?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD的邊長為2,P為正方形邊上一動點,運動路線是A→D→C→B→A,設(shè)P點經(jīng)過的路程為x,以點A、P、D為頂點的三角形的面積是y.則下列圖象能大致反映y與x的函數(shù)關(guān)系的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

直線經(jīng)過點(3,5),求關(guān)于的不等式≥0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:一次函數(shù)的圖象與x軸、y軸的交點分別為A、B,以B為旋轉(zhuǎn)中心,將△BOA逆時針旋轉(zhuǎn),得△BCD(其中O與C、A與D是對應(yīng)的頂點).

(1)求AB的長;
(2)當(dāng)∠BAD=45°時,求D點的坐標(biāo);
(3)當(dāng)點C在線段AB上時,求直線BD的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一次函數(shù)中,當(dāng)時,<1;當(dāng)時,>0則的取值范圍是       .

查看答案和解析>>

同步練習(xí)冊答案