【題目】如圖,四邊形ABCD是正方形,BEEF,DFEF,BE=2.5cm,DF=4cm,那么EF的長(zhǎng)為(

A. 6.5cm B. 6cm C. 5.5cm D. 4cm

【答案】A

【解析】

根據(jù)已知條件易證△BCE≌△CDF,再根據(jù)全等三角形的性質(zhì)得到CE=DF,BE=CF,EF=EC+CF即可求得EF的長(zhǎng).

∵四邊形ABCD是正方形,

∴∠BCD=90°,BC=CD.

又∵BE⊥EF,DF⊥EF,

∴∠BEC=∠CFD=90°,

∵∠CBE+∠ECB=90°,∠DCF+∠ECB=90°,

∴∠CBE=∠DCF,

在△BCE與△CDF中,

∴△BCE≌△CDF(AAS),

∴CE=DF,BE=CF,

又∵BE=2.5cm,DF=4cm,

∴EF=EC+CF=DF+BE=6.5cm.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)A(2,0),B(0,﹣6)兩點(diǎn)

(1)求這個(gè)二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)的對(duì)稱(chēng)軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,CDAB于點(diǎn)D,點(diǎn)E,F分別是BCAC的中點(diǎn).

(1)求證:DFDE.

(2)AC=8,BC=6,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠(chǎng)家以A、B兩種原料,利用不同的工藝手法生產(chǎn)出了甲、乙兩種袋裝產(chǎn)品,其中,甲產(chǎn)品每袋含1.5千克A原料、1.5千克B原料;乙產(chǎn)品每袋含2千克A原料、1千克B原料.甲、乙兩種產(chǎn)品每袋的成本價(jià)分別為袋中兩種原料的成本價(jià)之和.若甲產(chǎn)品每袋售價(jià)72元,則利潤(rùn)率為20%.某節(jié)慶日,廠(chǎng)家準(zhǔn)備生產(chǎn)若干袋甲產(chǎn)品和乙產(chǎn)品,甲產(chǎn)品和乙產(chǎn)品的數(shù)量和不超過(guò)100袋,會(huì)計(jì)在核算成本的時(shí)候把A原料和B原料的單價(jià)看反了,后面發(fā)現(xiàn)如果不看反,那么實(shí)際成本比核算時(shí)的成本少500元,那么廠(chǎng)家在生產(chǎn)甲乙兩種產(chǎn)品時(shí)實(shí)際成本最多為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AC=BC=1,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A1B1C,旋轉(zhuǎn)角為ɑ(0°<ɑ<90°),連接BB1.設(shè)CB1AB于點(diǎn)D,A1B1分別交AB、AC于點(diǎn)E,F(xiàn).

(1)求證:△BCD≌△A1CF;

(2)若旋轉(zhuǎn)角ɑ30°,

①請(qǐng)你判斷△BB1D的形狀;

②求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線(xiàn)交AB于E,D為垂足,連結(jié)EC

⑴求∠ECD的度數(shù);

⑵若CE=5,求CB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的材料,解答問(wèn)題:為解方(x2﹣1)2﹣5(x2﹣1)+6=0.我們可以將(x2﹣1)看作一個(gè)整體,然后x2﹣1=y,那么原方程可化為y2﹣5y+6=0,解得y1=2,y2=3.

當(dāng)y=2時(shí),x2﹣1=2,x2=3,x=±;

當(dāng)y=3時(shí),x2﹣1=3,x2=4,x=±2.

當(dāng)原方程的解為x1=, x2=﹣, x3=2,x4=﹣2.

上述解題方法叫做換元法;請(qǐng)利用換元法解方程.(x2+x)2﹣4(x2+x)﹣12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為正方形,DEACCECA,直線(xiàn)ECDA延長(zhǎng)線(xiàn)于F.

(1)CD6,求DE的長(zhǎng);

(2)求證:AEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC中,CDABD,且BD=4,AD=6,CD=8

1)求證:∠ACB=ABC;

2)如圖2,EAC的中點(diǎn),連結(jié)DE.動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線(xiàn)段BA向點(diǎn)A 運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線(xiàn)段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止運(yùn)動(dòng).設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒),

①若MNBC平行,求t的值;

②問(wèn)在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案