(1)

證明:若a為整數(shù),則(2a+1)2-1能被8整除

(2)

證明:若a為整數(shù),則a3-a能被6整除

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在一次研究性學(xué)習活動中,某小組將兩張互相重合的正方形紙片ABCD和EFGH的中心O用圖釘固定住,保持正方形ABCD不動,順時針旋轉(zhuǎn)正方形EFGH,如圖所示.
(1)小組成員經(jīng)觀察、測量,發(fā)現(xiàn)在旋轉(zhuǎn)過程中,有許多有趣的結(jié)論.下面是旋轉(zhuǎn)角度小于90°時他們得到的一些猜想:
①ME=MA;
②兩張正方形紙片的重疊部分的面積為定值;
③∠MON保持45°不變.
請你對這三個猜想作出判斷(正確的在序號后的括號內(nèi)打上“√”,錯誤的打上“×”):
①( 。虎冢ā 。虎郏ā 。
(2)小組成員還發(fā)現(xiàn):(1)中的△EMN的面積S隨著旋轉(zhuǎn)角度∠AOE的變化而變化.請你指出在怎樣的位置時△EMN的面積S取得最大值.(不必證明)
(3)上面的三個猜想中若有正確的,請選擇其中的一個給予證明;若都是錯誤的,請選擇其一說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以Rt△ABC的直角邊AB為直徑的半圓O,與斜邊AC交于D,E是BC邊上的中點,連接DE.
(1)DE與半圓O相切嗎?若相切,請給出證明;若不相切,請說明理由;
(2)若AD、AB的長是方程x2-10x+24=0的兩個根,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟寧三模)如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.

(1)當正方形ADEF繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當正方形ADEF繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點G.求證:BD⊥CF;
(3)在(2)小題的條件下,AC與BG的交點為M,當AB=4,AD=
2
時,求線段CM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•鶴崗模擬)如圖,O是邊長為a的正方形ABCD的對稱中心,P為OD上一點,OP=b(0<b<
2
2
a
),連接AP,把一個邊長均大于
2
a
的直角三角板的直角頂點放置于P點處,讓三角板繞P點旋轉(zhuǎn),旋轉(zhuǎn)時保持三角板的兩直角邊分別與正方形的BC、CD邊(含端點)相交,其交點為E、F.
(1)在旋轉(zhuǎn)過程中,PE的長能否與AP的長相等?若能,請作出此時點E的位置,并給出證明;若不能,請說明理由.
(2)探究在旋轉(zhuǎn)過程中,線段EF與AP長的大小關(guān)系,并對你得出的結(jié)論給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在銳角△ABC中,AB=AC.D為底邊BC上一點,E為線段AD上一點,且∠BED=∠BAC=2∠DEC,連接CE.
(1)求證:∠ABE=∠DAC;
(2)若∠BAC=60°,試判斷BD與CD有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若∠BAC=α,那么(2)中的結(jié)論是否還成立.若成立,請加以證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案