【題目】數(shù)據(jù)2,3,5,5,4的眾數(shù)是( )
A.2
B.3
C.4
D.5

【答案】D
【解析】解:∵5是這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),
∴這組數(shù)據(jù)的眾數(shù)為5.
故選D.
【考點(diǎn)精析】掌握中位數(shù)、眾數(shù)是解答本題的根本,需要知道中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個(gè),也可能多個(gè),它一定是這組數(shù)據(jù)中的數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(2,0),B(0,4),C(﹣3,2).

(1)如圖1,求△ABC的面積.
(2)若點(diǎn)P的坐標(biāo)為(m,0),
①請(qǐng)直接寫出線段AP的長(用含m的式子表示);
②當(dāng)SPAB=2SABC時(shí),求m的值.
(3)如圖2,若AC交y軸于點(diǎn)D,直接寫出點(diǎn)D的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在凸多邊形中, 四邊形有2條對(duì)角線, 五邊形有5條對(duì)角線, 經(jīng)過觀察、探索、歸納, 你認(rèn)為凸八邊形的對(duì)角線條數(shù)應(yīng)該是多少條? 簡(jiǎn)單扼要地寫出你的思考過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請(qǐng)回答問題
(1)請(qǐng)直接寫出a、b、c的值.a(chǎn)= , b= , c=
(2)a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)P為易動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,點(diǎn)P在0到2之間運(yùn)動(dòng)時(shí)(即0≤x≤2時(shí)),請(qǐng)化簡(jiǎn)式子:|x+1|﹣|x﹣1|+2|x+5|(請(qǐng)寫出化簡(jiǎn)過程)

(3)在(1)(2)的條件下,點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長度和5個(gè)單位長度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.請(qǐng)問:BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC放置在第一象限內(nèi),已知A(3,0),AOB=30°,反比例函數(shù)y=的圖像交BC、AB于點(diǎn)D、E.

(1)若點(diǎn)D為BC的中點(diǎn),試證明點(diǎn)E為AB的中點(diǎn);

(2)若點(diǎn)A關(guān)于直線OB的對(duì)稱點(diǎn)為F,試探究:點(diǎn)F是否落在該雙曲線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教育行政部門規(guī)定初中生每天戶外活動(dòng)的平均時(shí)間不少于1小時(shí),為了解學(xué)生戶外活動(dòng)的情況,隨機(jī)地對(duì)部分學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息解答下列問題:

(1)在這次調(diào)查中共調(diào)查的學(xué)生人數(shù)為

(2)若我市共有初中生約14000名,試估計(jì)我市符合教育行政部門規(guī)定的活動(dòng)時(shí)間的學(xué)生數(shù);

(3)試通過對(duì)抽樣數(shù)據(jù)的分析計(jì)算,說明我市初中生參加戶外活動(dòng)的平均時(shí)間是否符合教育行政部門的要求?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題11分)如圖所示,直線ly=3x+3x軸交于點(diǎn)A,與y軸交于點(diǎn)B.把AOB沿y軸翻折,點(diǎn)A落到點(diǎn)C,拋物線過點(diǎn)B、CD3,0).

1)求直線BD和拋物線的解析式.

2)若BD與拋物線的對(duì)稱軸交于點(diǎn)M,點(diǎn)N在坐標(biāo)軸上,以點(diǎn)N、B、D為頂點(diǎn)的三角形與MCD相似,求所有滿足條件的點(diǎn)N的坐標(biāo).

3)在拋物線上是否存在點(diǎn)P,使SPBD=6?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DE是∠ADC角平分線,若已知∠B=50°,∠BAD=60°,則∠CDE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會(huì)減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)解析式;

(2)在投入成本最低的情況下,增種果樹多少棵時(shí),果園可以收獲果實(shí)6750千克?

(3)當(dāng)增種果樹多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案