【題目】如圖,△ABM與△CDM是兩個(gè)全等的等邊三角形,MA⊥MD.有下列四個(gè)結(jié)論:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直線MB垂直平分線段CD;(4)四邊形ABCD是軸對稱圖形.其中正確結(jié)論的個(gè)數(shù)為( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】(1)∵△ABM≌△CDM,△ABM、△CDM都是等邊三角形,
∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,
又∵MA⊥MD,
∴∠AMD=90°,
∴∠BMC=360°60°6090°=150°,
又∵BM=CM,
∴∠MBC=∠MCB=15°;
(2)∵AM⊥DM,
∴∠AMD=90°,
又∵AM=DM,
∴∠MDA=∠MAD=45°,
∴∠ADC=45°+60°=105°,
∠ABC=60°+15°=75°,
∴∠ADC+∠ABC=180°;
(3)延長BM交CD于N,
∵∠NMC是△MBC的外角,
∴∠NMC=15°+15°=30°,
∴BM所在的直線是△CDM的角平分線,
又∵CM=DM,
∴BM所在的直線垂直平分CD;
(4)根據(jù)(2)同理可求∠DAB=105°,∠BCD=75°,
∴∠DAB+∠ABC=180°,
∴AD∥BC,
又∵AB=CD,
∴四邊形ABCD是等腰梯形,
∴四邊形ABCD是軸對稱圖形。
故(2)(3)(4)正確。
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛汽車和一輛摩托車分別從A,B兩地去同一城市,l1 ,l2分別表示汽車、摩托車離A地的距離s(km)隨時(shí)間t(h)變化的圖象,則下列結(jié)論:①摩托車比汽車晚到1 h;②A,B兩地的距離為20 km;③摩托車的速度為45 km/h,汽車的速度為60 km/h;④汽車出發(fā)1 h后與摩托車相遇,此時(shí)距離B地40 km;⑤相遇前摩托車的速度比汽車的速度快.其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=(x﹣1)2+n與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3),點(diǎn)D與點(diǎn)C關(guān)于拋物線的對稱軸對稱.
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)點(diǎn)P是拋物線對稱軸上的一動(dòng)點(diǎn),當(dāng)△PAC的周長最小時(shí),求出點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q在x軸上,且∠ADQ=∠DAC,請直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的兩個(gè)實(shí)數(shù)根,且x1、x2滿足不等式x1x2+2(x1+x2)>0,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=65°,∠B=75°,將△ABC沿EF對折,使C點(diǎn)與C′點(diǎn)重合.當(dāng)∠1=45°時(shí),∠2=________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜邊AB的垂直平分線交AC于點(diǎn)D,點(diǎn)F在AC上,點(diǎn)E在BC的延長線上,CE=CF,連接BF,DE.線段DE和BF在數(shù)量和位置上有什么關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當(dāng)x>1時(shí),y的值隨x值的增大而減小.
③3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度數(shù);
(2)延長AC至E,使CE=AC,求證:DA=DE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com