【題目】如圖,在ABC中,∠A90°,ABAC,∠ABC的角平分線交ACD,BD4,過點(diǎn)CCEBDBD的延長線于E,則CE的長為(  )

A.B.2C.3D.2

【答案】B

【解析】

延長CEBA延長線交于點(diǎn)F,首先證明△BAD≌△CAF,根據(jù)全等三角形的性質(zhì)可得BDCF,再證明△BEF≌△BCE可得CEEF,進(jìn)而可得CEBD,即可得出結(jié)果.

證明:延長CEBA延長線交于點(diǎn)F,

∵∠BAC90°,CE⊥BD,

∴∠BAC∠DEC,

∵∠ADB∠CDE,

∴∠ABD∠DCE

△BAD△CAF中,

,

∴△BAD≌△CAFASA),

∴BDCF,

∵BD平分∠ABC,CE⊥DB

∴∠FBE∠CBE,

△BEF△BCE中,

,

∴△BEF≌△BCEAAS),

∴CEEF

∴DB2CE,即CEBD×42

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD是正方形,MAB延長線上一點(diǎn).直角三角尺的一條直角邊經(jīng)過點(diǎn)D,且直角頂點(diǎn)EAB邊上滑動(dòng)(點(diǎn)E不與點(diǎn)A、B重合),另一直角邊與∠CBM的平分線BF相交于點(diǎn)F

1)如圖1,當(dāng)點(diǎn)EAB邊得中點(diǎn)位置時(shí):

通過測量DE、EF的長度,猜想DEEF滿足的數(shù)量關(guān)系是

連接點(diǎn)EAD邊的中點(diǎn)N,猜想NEBF滿足的數(shù)量關(guān)系是 ,請證明你的猜想.

2)如圖2,當(dāng)點(diǎn)EAB邊上的任意位置時(shí),猜想此時(shí)DEEF有怎樣的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1)(﹣5)﹣(+3)+(﹣9)﹣(﹣7

2)(+5)+(﹣3)-(﹣6)-(+15

(3) (-)÷(-)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠BAD60°

(1) 如圖1,點(diǎn)E為線段AB的中點(diǎn),連接DECE.若AB4,求線段EC的長

(2) 如圖2M為線段AC上一點(diǎn)(不與A、C重合),以AM為邊向上構(gòu)造等邊三角形AMN,線段MNAD交于點(diǎn)G,連接NC、DMQ為線段NC的中點(diǎn),連接DQ、MQ,判斷DMDQ的數(shù)量關(guān)系,并證明你的結(jié)論

(3) (2)的條件下,若AC,請你直接寫出DMCN的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王上周五在股市上以收盤價(jià)(收市時(shí)的價(jià)格)每股25元買進(jìn)某公司股票1 000股,在接下來的一周交易日內(nèi),小王記下該股票每日收盤價(jià)相比前一天的漲跌情況:(單位:元)

根據(jù)上表回答問題:

1)星期二收盤時(shí),該股票每股______.

2)本周內(nèi)股票收盤時(shí)的最高價(jià)______.

3)已知買入股票與賣出股票均需支付成交金額的千分之五的交易費(fèi),若小王在本周五以收盤價(jià)將全部股票賣出,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.

(1)寫出你所知道的四邊形中是勾股四邊形的兩種圖形的名稱_____,_____;

(2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°后得到△DBE,連接AD、DC,若∠DCB=30°,試證明;DC2+BC2=AC2.(即四邊形ABCD是勾股四邊形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:三點(diǎn)A(-1,1),B(-3,2),C(-4,-1).

(1)作出與△ABC關(guān)于原點(diǎn)對(duì)稱的△A1B1C1,并寫出各頂點(diǎn)的坐標(biāo);

(2)作出與△ABC關(guān)于P(1,-2)點(diǎn)對(duì)稱的△A2B2C2,并寫出各頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=m﹣2xm2+m-4 +2x﹣1是一個(gè)二次函數(shù),求該二次函數(shù)的解析式.

【答案】y=﹣5x2+2x﹣1

【解析】試題分析:根據(jù)二次函數(shù)的定義得到m2+m﹣4=2m﹣2≠0,由此求得m的值,進(jìn)而得到該二次函數(shù)的解析式.

試題解析:依題意得:m2+m﹣4=2m﹣2≠0即(m﹣2)(m+3=0m﹣2≠0,

解得m=﹣3

則該二次函數(shù)的解析式為y=﹣5x2+2x﹣1

型】解答
結(jié)束】
21

【題目】如圖,在ABCD中,EF∥AB,F(xiàn)G∥ED,DE:DA=2:5,EF=4,求線段CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)A的坐標(biāo)為(10,0),拋物線y=ax2+bx+4過點(diǎn)B,C兩點(diǎn),且與x軸的一個(gè)交點(diǎn)為D﹣2,0),點(diǎn)P是線段CB上的動(dòng)點(diǎn),設(shè)CP=t0t10).

1)請直接寫出B、C兩點(diǎn)的坐標(biāo)及拋物線的解析式;

2)過點(diǎn)PPE⊥BC,交拋物線于點(diǎn)E,連接BE,當(dāng)t為何值時(shí),∠PBERt△OCD中的一個(gè)角相等?

3)點(diǎn)Qx軸上的動(dòng)點(diǎn),過點(diǎn)PPM∥BQ,交CQ于點(diǎn)M,作PN∥CQ,交BQ于點(diǎn)N,當(dāng)四邊形PMQN為正方形時(shí),求t的值.

查看答案和解析>>

同步練習(xí)冊答案