【題目】為落實美麗撫順的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.

(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?

(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?

【答案】(1)乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米.(2)10天.

【解析】

1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據(jù)工作時間=工作總量÷工作效率結(jié)合甲隊改造360米的道路比乙隊改造同樣長的道路少用3天,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;

(2)設安排甲隊工作m天,則安排乙隊工作天,根據(jù)總費用=甲隊每天所需費用×工作時間+乙隊每天所需費用×工作時間結(jié)合總費用不超過145萬元,即可得出關于m的一元一次不等式,解之取其中的最大值即可得出結(jié)論.

1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,

根據(jù)題意得:,

解得:x=40,

經(jīng)檢驗,x=40是原分式方程的解,且符合題意,

x=×40=60,

答:乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米;

(2)設安排甲隊工作m天,則安排乙隊工作天,

根據(jù)題意得:7m+5×≤145,

解得:m≥10,

答:至少安排甲隊工作10天.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等邊三角形,點D是直線BC上一點,以AD為一邊在AD的右側(cè)作等邊ADE.

(1)如圖①,點D在線段BC上移動時,直接寫出∠BAD和∠CAE的大小關系;

(2)如圖②,點D在線段BC的延長線上移動時,猜想∠DCE的大小是否發(fā)生變化.若不變請求出其大;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,AOC=50°.

(1)求出∠AOB及其補角的度數(shù);

(2)請求出∠DOC和∠AOE的度數(shù),并判斷∠DOE與∠AOB是否互補,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E是AB上一動點(不與點A,B重合),點F在AD上,過點E作EG⊥EF交BC于點G,連接FG.

(1)當BE=AF時,求證:EF=EG
(2)若AB=4,AF=1,且設AE=n,
①當FG∥AB時,求n的值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB的角平分線與∠ABC的外角平分線相交于點P,且∠D+C=200°,則∠P=( )

A. 10 ° B .20 ° C .30° D.40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象如圖,則下列說法:①;② 是方程的解;③若點,是這個函數(shù)的圖象上的兩點,且,則;④當,函數(shù)的值,則.其中正確的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點,與y軸交于點C,過點B作BM⊥x軸,垂足為M,BM=OM,OB=2 ,點A的縱坐標為4.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接MC,求四邊形MBOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)與兩坐標分別交于兩點,動點從原點出發(fā),以每秒2個單位長度的速度沿軸正方向運動,連接.設運動時間為 s.

(1)為何值時,的面積為6?

(2),作中邊上的高,當為何值時,長為4?并直接寫出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一副含 角的三角板 疊合在一起,邊 重合, (如圖1),點 為邊 的中點,邊 相交于點 .現(xiàn)將三角板 繞點 按順時針方向旋轉(zhuǎn)(如圖2),在 的變化過程中,點 相應移動的路徑長為 . (結(jié)果保留根號)

查看答案和解析>>

同步練習冊答案