【題目】如圖,在△ABC中,∠ABC=90°,AB=12,BC=5,若DE是△ABC的中位線,延長(zhǎng)DE交△ABC的外角∠ACM的平分線于點(diǎn)F,則線段DF的長(zhǎng)為( )
A.6
B.7
C.8
D.9
【答案】D
【解析】解:∵∠ABC=90°,AB=12,BC=5,
∴AC= =13,
∵DE是△ABC的中位線,
∴DE= BC=2.5,DE∥BC,EC= AC=6.5,
∵CF是△ABC的外角∠ACM的平分線,
∴∠ECF=∠MCF,
∵DE∥BC,
∴∠EFC=∠MCF,
∴∠ECF=∠EFC,
∴EF=EC=6.5,
∴DF=DE+EF=9,
所以答案是:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用三角形的外角和三角形中位線定理的相關(guān)知識(shí)可以得到問題的答案,需要掌握三角形一邊與另一邊的延長(zhǎng)線組成的角,叫三角形的外角;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表記錄了甲、乙、丙、丁四名跳遠(yuǎn)運(yùn)動(dòng)員選拔賽成績(jī)的平均數(shù) 與方差s2:
甲 | 乙 | 丙 | 丁 | |
平均數(shù) (cm) | 561 | 560 | 561 | 560 |
方差s2(cm2) | 3.5 | 3.5 | 15.5 | 16.5 |
根據(jù)表中數(shù)據(jù),要從中選擇一名成績(jī)好又發(fā)揮穩(wěn)定的運(yùn)動(dòng)員參加比賽,應(yīng)該選擇( )
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AD=DF,求證:AF平分∠BAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連接AF,BF,EF,過點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè).
(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是矩形ABCD的邊AD上的一動(dòng)點(diǎn),AB=6,BC=8,則點(diǎn)P到矩形的兩條對(duì)角線AC和BD的距離之和是( )
A.4.8
B.5
C.6
D.7.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸的負(fù)半軸交于點(diǎn),與軸交于點(diǎn),連結(jié),點(diǎn)在拋物線上,直線與軸交于點(diǎn).
(1)求的值及直線的函數(shù)表達(dá)式;
(2)點(diǎn)在軸正半軸上,點(diǎn)在軸正半軸上,連結(jié)與直線交于點(diǎn),連結(jié)并延長(zhǎng)交于點(diǎn),若為的中點(diǎn).
①求證:;
②設(shè)點(diǎn)的橫坐標(biāo)為,求的長(zhǎng)(用含的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com