【題目】如圖,點(diǎn)A、B在雙曲線y=(x<0)上,連接OA、AB,以OA、AB為邊作□OABC.若點(diǎn)C恰落在雙曲線y=(x>0)上,此時(shí)□OABC的面積為__________.
【答案】
【解析】
如圖,過(guò)A點(diǎn)作AD⊥x軸于D,過(guò)C作CE⊥x軸于E,過(guò)B作BF⊥AD于F,設(shè)A(a,﹣),C(b,),根據(jù)△ABF≌△COE可得B(a+b,﹣),即(a+b)(﹣)=﹣3,設(shè)=m,則可化方程為3m﹣=2,求得=,,然后根據(jù)□OABC的面積=2×S△OAC=2(S梯形ADEC﹣S△AOD﹣S△COE)即可得解.
解:如圖,連接AC,過(guò)A點(diǎn)作AD⊥x軸于D,過(guò)C作CE⊥x軸于E,過(guò)B作BF⊥AD于F,
易證△ABF≌△COE,設(shè)A(a,﹣),C(b,),則OE=BF=b,CE=AF=,
∴B(a+b,﹣),
∵B點(diǎn)在在雙曲線y=(x<0)上,
∴(a+b)(﹣)=﹣3,
設(shè)=m,則可化方程為3m﹣=2,
解得m=,或m=(舍去),
∴=,,
∴S□OABC=2×S△OAC
=2(S梯形ADEC﹣S△AOD﹣S△COE)
=2[(﹣)(b﹣a)﹣×∣﹣3∣﹣×2]
=﹣+3+2﹣﹣5
=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,旗桿AB的頂端B在夕陽(yáng)的余輝下落在一個(gè)斜坡上的點(diǎn)D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測(cè)量旗桿的高度,在旗桿的底部A處測(cè)得點(diǎn)D的仰角為15°,AC=10米,又測(cè)得∠BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(≈1.7,結(jié)果精確到個(gè)位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則sin∠EFG的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=20°.將△ABC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)得△A′B′C,且點(diǎn)B在A′B′ 上,CA′ 交AB于點(diǎn)D,則∠BDC的度數(shù)為( )
A. 40°B. 50°C. 60°D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,CF垂直直徑BD于點(diǎn)E,交邊AB于點(diǎn)F.
(1)求證:∠BFC=∠ABC.
(2)若⊙O的半徑為5,CF=6,求AF長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y= (x<0)的圖象相交于點(diǎn)A(-1,2)、點(diǎn)B(-4,n).
(1)求此一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△AOB的面積;
(3)在x軸上存在一點(diǎn)P,使△PAB的周長(zhǎng)最小,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B,O分別落在點(diǎn)B1,C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(3,0),B(0,4),則點(diǎn)B2018的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方形ABCD中,以AB為邊向正方形外作等邊三角形ABE,連接CE、BD交于點(diǎn)G,連接AG,那么∠AGD的底數(shù)是______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點(diǎn),BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得CE,連結(jié)BE,若AB=4,則BE的最小值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com