【題目】如圖,將平行四邊形ABCD沿EF對(duì)折,使點(diǎn)A落在點(diǎn)C處,若∠A=60°,AD=6,AB=12,則AE的長(zhǎng)為_______.
【答案】8.4.
【解析】
過(guò)點(diǎn)C作CG⊥AB的延長(zhǎng)線于點(diǎn)G,設(shè)AE=x,由于ABCD沿EF對(duì)折可得出AE=CE=x, 再求出∠BCG=30°,BG=BC=3, 由勾股定理得到,則EG=EB+BG=12-x+3=15-x,在△CEG中,利用勾股定理列出方程即可求出x的值.
解:過(guò)點(diǎn)C作CG⊥AB的延長(zhǎng)線于點(diǎn)G,
∵ABCD沿EF對(duì)折,
∴AE=CE
設(shè)AE=x,則CE=x,EB=12-x,
∵AD=6,∠A=60°,
∴BC=6, ∠CBG=60°,
∴∠BCG=30°,
∴BG=BC=3,
在△BCG中,由勾股定理可得:
∴EG=EB+BG=12-x+3=15-x
在△CEG中,由勾股定理可得:
解得:
故答案為:8.4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,城氣象臺(tái)測(cè)得臺(tái)風(fēng)中心在城正西方向的處,以每小時(shí)的速度向南偏東的方向移動(dòng),距臺(tái)風(fēng)中心的范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域.
(1)求城與臺(tái)風(fēng)中心之間的最小距離;(2)求城受臺(tái)風(fēng)影響的時(shí)間有多長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)如圖所示,在四邊形ABCD中,AB=2,BC=2,CD=1,AD=5,且∠C=90°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市公交快速通道開(kāi)通后,為響應(yīng)市政府“綠色出行”的號(hào)召,家住新城的小王上班由自駕車(chē)改為乘坐公交車(chē).已知小王家距上班地點(diǎn)18千米,他用乘公交車(chē)的方式平均每小時(shí)行駛的路程比他用自駕車(chē)的方式平均每小時(shí)行駛的路程的2倍還多9千米,他從家出發(fā)到達(dá)上班地點(diǎn),乘公交車(chē)方式所用時(shí)間是自駕車(chē)方式所用時(shí)間的.小王用自駕車(chē)方式上班平均每小時(shí)行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P、Q 是反比例函數(shù)(x>0)圖象上的兩點(diǎn),過(guò)點(diǎn) P、Q 分別作直線且與 x、y 軸分別交于點(diǎn) A、B和點(diǎn) M、N.已知點(diǎn) P 為線段 AB 的中點(diǎn).
(1)求△AOB 的面積(結(jié)果用含 a 的代數(shù)式表示);
(2)當(dāng)點(diǎn) Q 為線段 MN 的中點(diǎn)時(shí),小菲同學(xué)連結(jié) AN,MB 后發(fā)現(xiàn)此時(shí)直線 AN 與直線MB 平行,問(wèn)小菲同學(xué)發(fā)現(xiàn)的結(jié)論正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABD中,AB=AD,將△ABD沿BD對(duì)折,使點(diǎn)A翻折到點(diǎn)C,E是BD上一點(diǎn)。且BE>DE,連接AE并延長(zhǎng)交CD于F,連接CE.
(1)依題意補(bǔ)全圖形;
(2)判斷∠AFD與∠BCE的大小關(guān)系并加以證明;
(3)若∠BAD=120°,過(guò)點(diǎn)A作∠FAG=60°交邊BC于點(diǎn)G,若BG=m,DF=n,求AB的長(zhǎng)度(用含m,n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】暑假到了,即將迎來(lái)手機(jī)市場(chǎng)的銷(xiāo)售旺季.某商場(chǎng)銷(xiāo)售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4000 | 2500 |
售價(jià)(元/部) | 4300 | 3000 |
該商場(chǎng)計(jì)劃投入15.5萬(wàn)元資金,全部用于購(gòu)進(jìn)兩種手機(jī)若干部,期望全部銷(xiāo)售后可獲毛利潤(rùn)不低于2萬(wàn)元.(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷(xiāo)售量)
(1)若商場(chǎng)要想盡可能多的購(gòu)進(jìn)甲種手機(jī),應(yīng)該安排怎樣的進(jìn)貨方案購(gòu)進(jìn)甲乙兩種手機(jī)?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在甲種手機(jī)購(gòu)進(jìn)最多的方案上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)16萬(wàn)元,該商場(chǎng)怎樣進(jìn)貨,使全部銷(xiāo)售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A地在數(shù)軸上表示的數(shù)為-16,AB兩地相距50個(gè)單位長(zhǎng)度.小明從A地出發(fā)去B地,以每分鐘2個(gè)單位長(zhǎng)度的速度行進(jìn),第一次他向左1單位長(zhǎng)度,第二次向右2單位長(zhǎng)度,第三次再向左3單位長(zhǎng)度,第四次又向右4單位長(zhǎng)度…,按此規(guī)律行進(jìn).
(1)求出B地在數(shù)軸上表示的數(shù);
(2)若B地在原點(diǎn)的右側(cè),經(jīng)過(guò)第8次行進(jìn)后小明到達(dá)點(diǎn)P,此時(shí)點(diǎn)P與點(diǎn)B相距幾個(gè)單位長(zhǎng)度?8次運(yùn)動(dòng)完成后一共經(jīng)過(guò)了幾分鐘?
(3)若經(jīng)過(guò)n次(n為正整數(shù))行進(jìn)后,小明到達(dá)點(diǎn)Q,請(qǐng)你直接寫(xiě)出:點(diǎn)Q在數(shù)軸上表示的數(shù)應(yīng)如何表示?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與CD相交于O,OE是∠AOC的平分線,OF⊥CD,OG⊥OE,∠BOD=52°.
(1)求∠AOC,∠AOF的度數(shù);
(2)求∠EOF與∠BOG是否相等?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com