【題目】[閱讀]
在平面直角坐標(biāo)系中,以任意兩點P( x1,y1)、Q(x2,y2)為端點的線段中點坐標(biāo)為(,).
[運用]
(1)如圖,矩形ONEF的對角線相交于點M,ON、OF分別在x軸和y軸上,O為坐標(biāo)原點,點E的坐標(biāo)為(4,3),則點M的坐標(biāo)為 .
(2)在直角坐標(biāo)系中,有A(﹣1,2),B(3,1),C(1,4)三點,另有一點D與點A、B、C構(gòu)成平行四邊形的頂點,求點D的坐標(biāo).
【答案】M(2,1.5);(2)D(1,﹣1)或D(﹣3,5)或D(5,3).
【解析】試題分析:(1)先根據(jù)四邊形ONEF是矩形,所以矩形的性質(zhì)可以知道點M是對角線OE的中點,根據(jù)題中給出的線段的中點坐標(biāo)公式即可得出M點的坐標(biāo);
(2)根據(jù)題意畫出圖形,然后分三種情況:①當(dāng)AB為對角線時, ②當(dāng)BC為對角線時, ③當(dāng)AC為對角線時,求出點D的坐標(biāo).
解:(1)四邊形ONEF是矩形,且,
點M是對角線OE的中點,
,即.
因此,本題正確答案是:;
(2)如圖所示:
根據(jù)平行四邊形的對角線互相平分可得:
設(shè)D點的坐標(biāo)為,
以點A、B、C、D構(gòu)成的四邊形是平行四邊形,
①當(dāng)AB為對角線時,
,,,
,
,
,,
點坐標(biāo)為,
②當(dāng)BC為對角線時,
,,,
,,
D點坐標(biāo)為.
③當(dāng)AC為對角線時,
,,,
,,
D點坐標(biāo)為:,
綜上所述,符合要求的點有:,,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
(1)如圖①,點M、N分別為四邊形ABCD邊AD、BC的中點,則四邊形BNDM的面積與四邊形ABCD的面積關(guān)系是 .
(2)如圖②,在四邊形ABCD中,點M、N分別為AD、BC的中點,MB交AN于點P,MC交DN于點Q,若S△四邊形MPNQ=10,則S△ABP+S△DCQ的值為多少?
(3)問題解決
在矩形ABCD中,AD=2,DC=4,點M、N為AB上兩點,且滿足BN=2AM=2MN,連接MC、MD.若點P為CD上任意一點,連接AP、NP,使得AP與DM交于點E,NP與MC交于點F,則四邊形MEPF的面積是否存最大值?若存在,請求出最大面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,過點E作EF∥AB,交BC于點F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時,四邊形DBEF是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A(t+1,t+2),點B(t+3,t+1),將點A向右平移3個長度單位,再向下平移4個長度單位得到點C.
(1)用t表示點C的坐標(biāo)為_______;用t表示點B到y軸的距離為___________;
(2)若t=1時,平移線段AB,使點A、B到坐標(biāo)軸上的點、處,指出平移的方向和距離,并求出點、的坐標(biāo);
(3)若t=0時,平移線段AB至MN(點A與點M對應(yīng)),使點M落在x軸的負(fù)半軸上,三角形MNB的面積為4,試求點M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△DEF中,將△DEF按要求擺放,使得∠D的兩條邊分別經(jīng)過點B和點C.
(1)當(dāng)將△DEF如圖1擺放時,若∠A=50°,∠E+∠F=100°,則∠D= ;∠ABD+∠ACD= .
(2)當(dāng)將△DEF如圖2擺放時,∠A=m°,∠E+∠F=n°,請求出∠ABD+∠ACD的度數(shù)(用含m、n的代數(shù)式表示).
(3)能否將△DEF擺放到某個位置,使得BD、CD同時平分∠ABC和∠ACB.若能,求出∠A、∠E、∠F滿足的關(guān)系?若不能,請說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是 米.
(2)小明在書店停留了 分鐘.
(3)本次上學(xué)途中,小明一共行駛了 米.一共用了 分鐘.
(4)我們認(rèn)為騎單車的速度超過 300 米/分就超過了安全限度.問:在整個上學(xué)途中哪個時間段小明的騎車速度最快,最快速度為多少,在安全限度內(nèi)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,的頂點都在網(wǎng)格點上,其中,點坐標(biāo)為,
(1)寫出點、的坐標(biāo):(____,____)、(____,____)
(2)將先向左平移個單位長度,再向上平移個單位長度,得到,畫出;
(3)寫出三個頂點坐標(biāo)(___,___)、(___,___)、(___,___);
(4)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知,是等邊三角形,點為射線上任意一點(點與點不重合),連結(jié),將線段繞點逆時針旋轉(zhuǎn)得到線段,連結(jié)并延長交射線于點.
(1)如圖1,當(dāng)時,________,猜想________;
(2)如圖2,當(dāng)點為射線上任意一點時,猜想的度數(shù),并說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com