【題目】如圖,E,F(xiàn),G,H分別是矩形ABCD各邊的中點(diǎn),AB=6,BC=8,則四邊形EFGH的面積是 .
【答案】24
【解析】解:∵E,F(xiàn),G,H分別是矩形ABCD各邊的中點(diǎn),AB=6,BC=8,
∴AH=DH=BF=CF=8,AE=BE=DG=CG=3.
在△AEH與△DGH中,
∵ ,
∴△AEH≌△DGH(SAS).
同理可得△AEH≌△DGH≌△CGF≌△BEF,
∴S四邊形EFGH=S正方形﹣4S△AEH=6×8﹣4× ×3×4=48﹣24=24.
故答案為:24.
先根據(jù)E,F(xiàn),G,H分別是矩形ABCD各邊的中點(diǎn)得出AH=DH=BF=CF,AE=BE=DG=CG,故可得出△AEH≌△DGH≌△CGF≌△BEF,根據(jù)S四邊形EFGH=S正方形﹣4S△AEH即可得出結(jié)論.本題考查的是中點(diǎn)四邊形,熟知矩形的對邊相等且各角都是直角是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】身高相等的四名同學(xué)甲、乙、丙、丁參加風(fēng)箏比賽,四人放出風(fēng)箏的線長、線與地面的夾角如下表(假設(shè)風(fēng)箏線是拉直的),則四名同學(xué)所放的風(fēng)箏中最高的是( )
同學(xué) | 甲 | 乙 | 丙 | 丁 |
放出風(fēng)箏線長 | 140m | 100m | 95m | 90m |
線與地面夾角 | 30° | 45° | 45° | 60° |
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是直角三角形ABC斜邊上的中線,AE⊥AD交CB延長線于E , 則圖中一定相似的三角形是( 。
A.△AED與△ACB
B.△AEB與△ACD
C.△BAE與△ACE
D.△AEC與△DAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接杭州G20峰會(huì),某校開展了設(shè)計(jì)“YJG20”圖標(biāo)的活動(dòng),下列圖形中及時(shí)軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長;中華詩詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團(tuán)委組織了一次全校2000名學(xué)生參加的“中國詩詞大會(huì)”海選比賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分,為了更好地了解本次海選比賽的成績分布情況,隨機(jī)抽取了其中200名學(xué)生的海選比賽成績(成績x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列統(tǒng)計(jì)圖表:
抽取的200名學(xué)生海選成績分組表
組別 | 海選成績x |
A組 | 50≤x<60 |
B組 | 60≤x<70 |
C組 | 70≤x<80 |
D組 | 80≤x<90 |
E組 | 90≤x<100 |
請根據(jù)所給信息,解答下列問題:
(1)請把圖1中的條形統(tǒng)計(jì)圖補(bǔ)充完整;(溫馨提示:請畫在答題卷相對應(yīng)的圖上)
(2)在圖2的扇形統(tǒng)計(jì)圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 , 表示C組扇形的圓心角θ的度數(shù)為度;
(3)規(guī)定海選成績在90分以上(包括90分)記為“優(yōu)等”,請估計(jì)該校參加這次海選比賽的2000名學(xué)生中成績“優(yōu)等”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點(diǎn)C的俯角為30°,測得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為4,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補(bǔ),則弦BC的長為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P是弦AC上一動(dòng)點(diǎn)(不與A,C重合),過點(diǎn)P作PE⊥AB,垂足為E,射線EP交 于點(diǎn)F,交過點(diǎn)C的切線于點(diǎn)D.
(1)求證:DC=DP;
(2)若∠CAB=30°,當(dāng)F是 的中點(diǎn)時(shí),判斷以A,O,C,F(xiàn)為頂點(diǎn)的四邊形是什么特殊四邊形?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com