【題目】在中,、、三邊的長分別為、、,求這個三角形的面積.小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(即三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將的面積直接填寫在橫線上.__________________
(2)我們把上述求面積的方法叫做構(gòu)圖法.若三邊的長分別為、、(),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為)畫出相應(yīng)的,并求出它的面積.
(3) 若△ABC三邊的長分別為、、 (m>0,n>0,且m≠n),請利用圖③的長方形網(wǎng)格試運用構(gòu)圖法求出這三角形的面積.
【答案】(1);(2)圖見解析;3a2;(3)圖見解析;3mn.
【解析】
(1)依據(jù)△ABC的面積=3×31×2÷21×3÷22×3÷2進(jìn)行計算即可;
(2)是直角邊長為a,2a的直角三角形的斜邊;是直角邊長為2a,2a的直角三角形的斜邊;是直角邊長為a,4a的直角三角形的斜邊,把它整理為一個矩形的面積減去三個直角三角形的面積;
(3)是以m,2n為直角邊的直角三角形的斜邊長; 是以m,4n為直角邊的直角三角形的斜邊長;是以2m,2n為直角邊的直角三角形的斜邊長;繼而可作出三角形,然后求得三角形的面積.
(1)△ABC的面積=3×31×2÷21×3÷22×3÷2=,
故答案為:;
(2)如圖:
由圖可得,S△=2a×4a=3a2;
(3)如圖,
AB=,AC=,BC=2,
∴S△ABC=2m×4n×2m×2n×m×4n×m×2n=3mn.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點P從點B出發(fā),沿BC,CD,DA運動至點A停止.設(shè)點P運動的路程為x,△ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示.
(1)求△ABC的面積;
(2)求y關(guān)于x的函數(shù)解析式;
(3)當(dāng)△ABP的面積為5時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拉桿箱是人們出行的常用品,采用拉桿箱可以讓人們出行更輕松.如圖,一直某種拉桿箱箱體長AB=65cm,拉桿最大伸長距離BC=35cm,在箱體底端裝有一圓形滾輪,當(dāng)拉桿拉到最長時,滾輪的圓心在圖中的A處,點A到地面的距離AD=3cm,當(dāng)拉桿全部縮進(jìn)箱體時,滾輪圓心水平向右平移55cm到A′處,求拉桿把手C離地面的距離(假設(shè)C點的位置保持不變).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖所示的函數(shù)圖象是由函數(shù)y=(x﹣1)2+1(x≥0)的圖象C1和圖象C2組成中心對稱圖形,對稱中心為點(0,2).已知不重合的兩點A、B分別在圖象C1和C2上,點A、B的橫坐標(biāo)分別為a、b,且a+b=0.當(dāng)b<x≤a時該函數(shù)的最大值和最小值均與a、b的值無關(guān),則a的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品的成本是200元/件,售價是250元/件,年銷售量為10萬件.為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告.根據(jù)經(jīng)驗,每年投入的廣告費用x萬元,產(chǎn)品的年銷售量將是原銷售量的y倍,且y與x之間滿足二次函數(shù)關(guān)系:y=﹣0.001x2+0.06x+1.
(1)如果把利潤看作是銷售總額減去成本費用和廣告費用,試求出年利潤S(萬元)與廣告費用x(萬元)的函數(shù)關(guān)系式(無需自變量的取值范圍);
(2)如果公司年投入的廣告費不低于10萬元且不高于50萬元,求年利潤S的最大值;
(3)若公司希望年利潤在776萬元到908萬元之間(含端點),請從節(jié)約支出的角度直接寫出廣告費x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校把一塊形狀為直角三角形的廢地開辟為生物園,如圖所示,∠ACB=90°,AC=40m,BC=30m.線段CD是一條水渠,且D點在邊AB上,已知水渠的造價為800元,問:當(dāng)水渠的造價最低時,CD長為多少米?最低造價是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD放在如圖所示的直角坐標(biāo)系中,A點的坐標(biāo)為(4,0),N點的坐標(biāo)為(3,0),MN平行于y軸,E是BC的中點,現(xiàn)將紙片折疊,使點C落在MN上,折痕為直線EF.
(1)求點G的坐標(biāo);
(2)求直線EF的解析式;
(3)設(shè)點P為直線EF上一點,是否存在這樣的點P,使以P, F, G的三角形是等腰三角形?若存在,直接寫出P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接G20杭州峰會的召開,某校八年級(1)(2)班準(zhǔn)備集體購買一種T恤衫參加一項社會活動.了解到某商店正好有這種T恤衫的促銷,當(dāng)購買10件時每件140元,購買數(shù)量每增加1件單價減少1元;當(dāng)購買數(shù)量為60件(含60件)以上時,一律每件80元.
(1)如果購買x件(10<x<60),每件的單價為y元,請寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)如果八(1)(2)班共購買了100件T恤衫,由于某種原因需分兩批購買,且第一批購買數(shù)量多于30件且少于60件.已知購買兩批T恤衫一共花了9200元,求第一批T恤衫的購買數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的二次函數(shù).
當(dāng)取何值時,該二次函數(shù)的圖象開口向下?
在的條件下
①當(dāng)取何值時,??
②當(dāng)時,求的取值范圍;
③當(dāng)一時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com