【題目】解下列方程組(或不等式):
(1)
(2)
(3)
(4)
【答案】① ② ③ ④
【解析】
直接利用加減消元法解二元一次方程組即可;
先將方程整理成一般形式,再利用加減消元法解方程組即可;
先將三元方程組化為二元方程組解出x,z的值再代入方程求出y的值;
先將方程整理成一般形式,再利用加減消元法解方程組即可.
(1)
解:將①式乘以3加上②式乘以5,得34x=68,得x=2,
將x=2代入①式,得6+5y=11,
得y=1,
∴
(2)
解:先將二元一次方程組整理成一般式形式得,
將①式加上②式,得4y=28,解得y=7,
將y=7代入①式,得3x-7=8,得x=5,
∴
(3)
解:將①式加上②式,得,,④
將 ②減去③式,得,,⑤
將④式乘以2減去⑤式,得9x=27,x=3
將x=3代入④式,得15-2z=14,解得z=0.5
將x=3,z=0.5代入①式,得9-y+0.5=3,解得y=6.5,
∴
(4)
解:將二元一次方程組整理成一般式,得,
將①式減去②式,得4y=0,解得y=0,
將y=0代入①式,得5x=15.解得x=3,
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)
(2)2a3(a2)3÷a
(3)(x﹣1)2﹣x(x+1)
(4)20002﹣1999×2001(用簡便方法計算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的周長為16,∠ADC=120,E是AB的中點,P是對角線AC上的一個動點,則PE+PB的最小值是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,c)三點,其中a、b、c滿足關(guān)系式+(b﹣3)2=0,(c﹣4)2≤0.
(1) a=_____、b=_____、c=_____;
(2)求四邊形AOBC的面積;
(3)如果在第二象限內(nèi)有一點P(m,),且四邊形ABOP的面積與△ABC的面積相等 ,求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,在△ABC內(nèi)求作一點O,使點O到三邊的距離相等.甲同學(xué)的作法如圖1所示,乙同學(xué)的作法如圖2所示,對于兩人的作法,下列說法正確的是( 。
A.兩人都對B.兩人都不對C.甲對,乙不對D.乙對,甲不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠C=90°,D為BC的中點,以AC為直徑的⊙O交AB于點E.
(1)求證:DE是⊙O的切線;
(2)若AE:EB=1:2,BC=6,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點D,AE平分∠BAC交邊BC于點E,經(jīng)過點A、D、E的圓的圓心F恰好在y軸上,⊙F與y軸相交于另一點G.
(1)求證:BC是⊙F的切線;
(2)若點A、D的坐標(biāo)分別為A(0,﹣1),D(2,0),求⊙F的半徑;
(3)試探究線段AG、AD、CD三者之間滿足的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)學(xué)生為了解該校學(xué)生喜歡球類活動的情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查(要求每位學(xué)生只能填寫一種自己喜歡的球類),并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中提供的信息,解答下面的問題:
(1)參加調(diào)查的學(xué)生共有 人,在扇形圖中,表示“其他球類”的扇形的圓心角為 度;
(2)將條形圖補(bǔ)充完整;
(3)若該校有2000名學(xué)生,則估計喜歡“籃球”的學(xué)生共有多少人呢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com