如圖,在Rt△ABC中,∠C=90°,以BC邊為直徑的⊙O交AB于點(diǎn)D,連接OD并延長(zhǎng)交CA的延長(zhǎng)線于點(diǎn)E,過點(diǎn)D作DF⊥OE交EC于點(diǎn)F.
(1)求證:AF=CF.
(2)若ED=2,sin∠E=
3
5
,求AD的長(zhǎng).
(1)證法一:連接CD,OC、OD為⊙O的半徑,
且OC⊥EC,DF⊥OE
∴FD、FC為⊙O的兩條切線
.∴FD=FC
∴∠1=∠2.
又∵BC為⊙O的直徑,
∴∠BDC=90°
∴∠CDA=180°-90°=90°.
在Rt△CAD中,∠1+∠3=90°,∠2+∠4=90°
又∵∠1=∠2.∠3=∠4.
∴FD=FA
又FD=FC.
∴AF=CF.
證法二:連接OF,證明FD=FC的步驟同證法一.
∵FC⊥OC,F(xiàn)D⊥OD∴
OF為∠COD的平分.
∠5=∠6.
又∵∠5+∠6=∠7+∠B,OB=OD
∴∠7=∠B.
∴2∠5=2∠7
∴∠5=∠7.
∴OFBA.
∵O為BC的中點(diǎn).
∴AF=CF.

(2)設(shè)⊙O的半徑為R,在Rt△OCE中,OE=OD+DE=R+2,
sin∠E=
R
R+2
,由sin∠E=
3
5
得R=3
在Rt△EDF中,siN∠E=
3
5
,ED=2.設(shè)DF=3k,EF=5k,
根據(jù)勾股定理,得(3k)2+22=(5k)2,
解得k=
1
2

∴DF=
3
2
,EF=
5
2
∴AC=2AF=2DF=3.
在Rt△ABC中,AB=3
5

∵AC和ADB分別為⊙O的切線和割線,
∴AC2=AD•AB,
解得AD=
3
5
5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙O是△ABC的外接圓,過點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2
7
,AB=BC=3.求BD和AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC內(nèi)接于⊙O,EC切⊙O于點(diǎn)C,若∠BOC=76°,則∠BCE的度數(shù)是( 。
A.14°B.38°C.52°D.76°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連結(jié)AC,過點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:DE為⊙O的切線;
(2)若∠BAC=60°,CE=3,則⊙O的半徑是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC=4,AC=5,求⊙O的直徑的AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以Rt△ABC的直角邊AB為直徑的半圓O,與斜邊AC交于點(diǎn)D,E是BC邊的中點(diǎn),連接DE.
(1)DE與半圓O相切嗎?若相切,請(qǐng)給出證明;若不相切,請(qǐng)說明理由;
(2)若AD、AB的長(zhǎng)是方程x2-6x+8=0的兩個(gè)根,求直角邊BC的長(zhǎng);
(3)在(2)的條件下,則圖中陰影部分的面積=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA、PB切⊙O于A、B兩點(diǎn),C在
AB
AB上,過C點(diǎn)的切線交PA于E,交PB于F,若∠APB=50°.則∠EOF=( 。
A.45°B.50°C.65°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,過半徑為6cm的⊙O外一點(diǎn)P引圓的切線PA,PB,連接PO交⊙O于F,過F作⊙O的切線,交PA,PB分別于D,E,如果PO=10cm,∠APB=40°.
求:(1)△PED的周長(zhǎng);(2)∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙O的直徑AB與弦CD互相垂直,垂足為點(diǎn)E.⊙O的切線BF與弦AD的延長(zhǎng)線相交于點(diǎn)F,且AD=2
7
,sin∠BCD=
3
4

(1)求證:CDBF;
(2)求弦CD的長(zhǎng);
(3)求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案