如圖,拋物線y=ax2+bx+c的交x軸于點A和點B(-2,0),與y軸的負半軸交于點C,且線段OC的長度是線段OA的2倍,拋物線的對稱軸是直線x=1.
(1)求拋物線的解析式;
(2)若過點(0,-5)且平行于x軸的直線與該拋物線交于M、N兩點,以線段MN為一邊拋物線上與M、N不重合的任意一點P(x,y)為頂點作平行四邊形,若平行四邊形的面積為S,請你求出S關于點P的縱坐標y的函數(shù)解析式;
(3)當0<x≤
10
3
時,(2)中的平行四邊形的面積是否存在最大值?若存在,請求出來;若不存在,請說明理由.
(1)∵拋物線的對稱軸x=1,B(-2,0)
∴A(4,0),OA=4
∴OC=2OA=8,即C點坐標為(0,-8)
設拋物線的解析式為y=a(x+2)(x-4)
由于拋物線過C點,
則有a(0+2)(0-4)=-8,
即a=1
因此拋物線的解析式為y=(x+2)(x-4)=x2-2x-8;

(2)當y=-5時,x2-2x-8=-5,
解得x=3,x=-1
∴M、N的坐標分別為(3,-5),(-1,-5)
∴MN=4
∴S=4|y+5|;

(3)由于0<x≤
10
3
,此時y<0,且P與M、N不重合,因此可分兩種情況進行討論:
①當0<x<3時,
S=4(-5-y)=4(-5-x2+2x+8)=4(-x2+2x-1+4)=-4(x-1)2+16,
Smax=16;
②當3<x≤
10
3
時,
S=4(5+y)=4(x2-2x-3)=4(x-1)2-16,
由于拋物線開口向上,且對稱軸為x=-1,
因此當x=
10
3
時,Smax=
52
9

因此存在平行四邊形的最大值,且最大值為16.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點A1、A2、A3、…、An在拋物線y=x2圖象點B1、B2、B3、…、Bn在y軸上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都為等腰直角三角形(點B0是坐標原點),則△A2012B2011B2012的腰長=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直角梯形ABCD的頂點A、B、C的坐標分別為(
1
2
,0)、(2,0)和(2,3),ABCD,∠C=90°,CD=CB.
(1)求點D的坐標;
(2)拋物線y=ax2+bx+c過原點O與點(7,1),且對稱軸為過點(4,3)與y軸平行的直線,求拋物線的函數(shù)關系式;
(3)在(2)中的拋物線上是否存在一點P,使得PA+PB+PC+PD最。咳舸嬖,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線y=-
1
2
x+1交坐標軸于A,B兩點,以線段AB為邊向上作正方形ABCD,過點A,D,C的拋物線與直線的另一個交點為E.
(1)直接寫出點C和點D的坐標,C(______)、D(______);
(2)求出過A,D,C三點的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=kx+b,與拋物線y=ax2交于A(1,m),B(-2,4)+y軸交與點C.
(1)求拋物線的解析式;
(2)求S△AOB;
(3)求
BC
AC
的值;
(4)判斷點A是否在以BO為直徑的圓上?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=2
3
,直線y=
3
x-2
3
經(jīng)過點C,交y軸于點G.
(1)點C、D的坐標分別是C______,D______;
(2)求頂點在直線y=
3
x-2
3
上且經(jīng)過點C、D的拋物線的解析式;
(3)將(2)中的拋物線沿直線y=
3
x-2
3
平移,平移后的拋物線交y軸于點F,頂點為點E(頂點在y軸右側(cè)).平移后是否存在這樣的拋物線,使△EFG為等腰三角形?若存在,請求出此時拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A的坐標為(7,0),點B的坐標為(3,4),
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)將線段AB繞A點順時針旋轉(zhuǎn)75°至AC,直接寫出點C的坐標;
(3)在y軸上找一點P,第一象限找一點Q,使得以O、B、Q、P為頂點的四邊形是菱形,求出點Q的坐標;
(4)△OAB的邊OB上有一動點M,過M作MNOA交AB于N,將△BMN沿MN翻折得△DMN.設MN=x,△DMN與△OAB重疊部分的面積為y,求出y與x之間的函數(shù)關系式,并求出重疊部分面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+3經(jīng)過點A(1,0)和B(3,0),點C(m,
15
)在拋物線的對稱軸上.
(1)求拋物線的函數(shù)表達式.
(2)求證:△ABC是等腰三角形.
(3)動點P在線段AC上,從點A出發(fā)以每鈔1個單位的速度向C運動,同時動點Q在線段AB上,從B出發(fā)以每秒1個單位的速度向A運動.當Q到達點A時,兩點同時停止運動.設運動時間為t秒,求當t為何值時,△APQ與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某跑道的周長為400m且兩端為半圓形,要使矩形內(nèi)部操場的面積最大,直線跑道的長應為多少?

查看答案和解析>>

同步練習冊答案