已知:如圖,AC=AD,AB是∠CAD的角平分線.求證:BC=BD.

【答案】分析:首先根據(jù)角平分線的性質(zhì)可得∠BAC=∠BAD,再有條件AC=AD,AB是公共邊,即可利用SAS定理判定△ABC≌△ABD,再根據(jù)全等三角形的性質(zhì)可得到BC=BD.
解答:證明:∵AB是∠CAD的角平分線,
∴∠BAC=∠BAD,
在△ABC和△ABD中,
∴△ABC≌△ABD(SAS),
∴BC=BD.
點(diǎn)評(píng):此題主要考查了全等三角形的判定與性質(zhì),全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時(shí),關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

29、已知:如圖,AC=BD,DF=CE,∠ECB=∠FDA.求證:AF=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知:如圖,AC=DF,AC∥FD,AE=DB,則根據(jù)
SAS
(填上SSS、SAS、ASA或AAS)可得△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AC是⊙O的直徑,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切線,E精英家教網(wǎng)是切點(diǎn),
求證:(1)OD∥AB;
(2)2DE2=BE•OD;
(3)設(shè)BE=2,∠ODE=a,則cos2a=
1OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、已知:如圖,AC、BD交于O點(diǎn),OA=OC,OB=OD、則不正確的結(jié)果是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AC平分∠BAD,CE⊥AB于E點(diǎn),CF⊥AD于F點(diǎn),在AB上有一點(diǎn)M,且CM=CD.
(1)請(qǐng)你用尺規(guī)作出點(diǎn)M的位置,
(2)若AF=12,DF=4,求AM的長(zhǎng),
(3)試說明∠CDA與∠CMA的關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案