定義:a是不為1的有理數(shù),我們把稱為a的衍生數(shù).如:2的衍生數(shù)是,-1的衍生數(shù)是.已知,a2是a1的衍生數(shù),a3是a2的衍生數(shù),a4是a3的衍生數(shù),…,依此類推,則a2012=   
【答案】分析:已知 ,首先根據(jù)衍生數(shù)的定義,依次計(jì)算出a2、a3、a4、a5,發(fā)現(xiàn)每3個(gè)數(shù)為一個(gè)循環(huán),然后用2012除以3,即可得出答案.
解答:解:已知,
a1的衍生數(shù)a2==,
a2的衍生數(shù)a3==4,
a3的衍生數(shù)a4==-,
a4的衍生數(shù)a5==,
三個(gè)數(shù)為一個(gè)循環(huán),
2012÷3=670…2,
所以a2012=,
故答案為:
點(diǎn)評(píng):此題考查了學(xué)生對(duì)數(shù)字變化類的理解和掌握,解答此題的關(guān)鍵是正確理解衍生數(shù)的定義,依次計(jì)算出a2、a3、a4、a5的值,從而找出數(shù)字變化的規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-單項(xiàng)式乘以多項(xiàng)式(帶解析) 題型:解答題

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-單項(xiàng)式乘以多項(xiàng)式(解析版) 題型:解答題

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)任意有理數(shù)x、y定義運(yùn)算如下:x△y=ax+by+cxy,這里a、b、c是給定的數(shù),等式右邊是通常數(shù)的加法及乘法運(yùn)算,如當(dāng)a=1,b=2,c=3時(shí),l△3=1×l+2×3+3×1×3=16,現(xiàn)已知所定義的新運(yùn)算滿足條件,1△2=3,2△3=4,并且有一個(gè)不為零的數(shù)d使得對(duì)任意有理數(shù)x△d=x,求a、b、c、d的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案