【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是( )
A.①② B.②③ C.①③ D.①④
【答案】D.
【解析】
試題解析:∵AE=AB,
∴BE=2AE,
由翻折的性質(zhì)得,PE=BE,
∴∠APE=30°,
∴∠AEP=90°-30°=60°,
∴∠BEF=∠BEP =∠AEF =60°,
∴∠EFB=90°-60°=30°,
∴EF=2BE,故①正確;
∵BE=PE,
∴EF=2PE,
∵EF>PF,
∴PF<2PE,故②錯誤;
由翻折可知EF⊥PB,
∴∠EBQ=∠EFB=30°,
∴BE=2EQ,EF=2BE,
∴FQ=3EQ,故③錯誤;
由翻折的性質(zhì),∠EFB=∠EFP=30°,
∴∠BFP=30°+30°=60°,
∵∠PBF=90°-∠EBQ=90°-30°=60°,
∴∠PBF=∠PFB=60°,
∴△PBF是等邊三角形,故④正確;
綜上所述,結(jié)論正確的是①④.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O是坐標(biāo)原點,四邊形ABCO是菱形,點A的坐標(biāo)為(-3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H,連接BM.
(1)求直線AC的解析式;
(2)動點P從點A出發(fā),沿折線ABC的方向以2個單位/秒的速度向終點C勻速運動,設(shè)△PMB的面積為S,點P的運動時間為t秒,求S與t之間的函數(shù)關(guān)系式(要求寫出自變量t的取值范圍);
(3)動點P從點A出發(fā),沿線段AB方向以2個單位/秒的速度向終點B勻速運動,當(dāng)∠MPB與∠BCO互為余角時,試確定t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A.有一組對邊平行但不相等的四邊形是梯形
B.有一個角是直角的梯形是直角梯形
C.等腰梯形的兩底角相等
D.直角梯形的兩條對角線不相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,矩形OABC中,A(10,0),C(0,4),D為OA的中點,P為BC邊上一點.若△POD為等腰三角形,則所有滿足條件的點P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)
(2)(﹣2x2)3+x2x4﹣(﹣3x3)2
(3)(x+2)2﹣(x+1)(x﹣1)
(4)(﹣2a﹣b+3)(﹣2a+b+3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果P(m-1,m)在y軸上,那么點P的坐標(biāo)是( )
A. (-2,0) B. (0,-2) C. (1,0) D. (0,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( 。
A. 有理數(shù)是有限小數(shù) B. 有理數(shù)是有限小數(shù)
C. 有理數(shù)是無限循環(huán)小數(shù) D. 無限不循環(huán)小數(shù)是無理數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在半徑為R的圓形鋼板上,裁去半徑為r的四個小圓,當(dāng)R=7.2 cm,r=1.4 cm時,剩余部分的面積是________cm2(π取3.14,結(jié)果精確到個位).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com