(8分)如圖,在△ABC中,AB=AC,點(diǎn)O為底邊上的中點(diǎn),以點(diǎn)O為圓心,1為半徑的半圓與邊AB相切于點(diǎn)D

 1.(1)判斷直線AC與⊙O的位置關(guān)系,并說(shuō)明理由;

 2.(2)當(dāng)∠A=60°時(shí),求圖中陰影部分的面積.

 

 

1.解:(1)直線AC與⊙O相切.···················································································· 1分

理由是:

連接OD,過(guò)點(diǎn)OOEAC,垂足為點(diǎn)E

∵⊙O與邊AB相切于點(diǎn)D,

ODAB.·················································································································· 2分

AB=AC,點(diǎn)O為底邊上的中點(diǎn),

AO平分∠BAC············································································································· 3分

又∵ODABOEAC

OD= OE······················································································································· 4分

OE是⊙O的半徑.

又∵OEAC,∴直線AC與⊙O相切.··········································································· 5分

 

2.(2)∵AO平分∠BAC,且∠BAC=60°,∴∠OAD=OAE=30°,

∴∠AOD=AOE=60°,

在Rt△OAD中,∵tan∠OAD = ,∴AD==,同理可得AE=

∴S四邊形ADOE =×OD×AD×2=×1××2=························································· 6分

又∵S扇形形ODE==π·························································································· 7分

∴S陰影= S四邊形ADOE -S扇形形ODE=-π.······································································· 8分

 

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案