【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某市采用價(jià)格調(diào)控的手段達(dá)到節(jié)水的目的,該市自來(lái)水收費(fèi)的價(jià)目表如下表(注:水費(fèi)按月份結(jié)算,表示立方米):
價(jià)目表 | |
每月用水量 | 單價(jià) |
不超出的部分 | 元 |
超出不超出的部分 | 元 |
超出的部分 | 元 |
注:水費(fèi)按月結(jié)算 |
例:若某戶(hù)居民月份用水,應(yīng)收水費(fèi)為(元).
請(qǐng)根據(jù)上表的內(nèi)容解答下列問(wèn)題:
填空:若該戶(hù)居民月份用水,則應(yīng)收水費(fèi)________元;
若該戶(hù)居民月份用水(其中),則應(yīng)收水費(fèi)多少元?(用含的表示,并化簡(jiǎn))
若該戶(hù)居民,兩個(gè)月共用水(月份用水量超過(guò)了月份),設(shè)月份用水,求該戶(hù)居民,兩個(gè)月共交水費(fèi)多少元?(用含的表示,并化簡(jiǎn))
【答案】(1)8;(2)應(yīng)收水費(fèi)為元;(3)①元;②月份用水量不少于但不超過(guò)③(元)
【解析】
(1)不超過(guò)6m3,單價(jià)為2元.水費(fèi)=單價(jià)×數(shù)量;
(2)水費(fèi)=單價(jià)為2元的6m3的水費(fèi)+單價(jià)為4元的超過(guò)6m3的水費(fèi);
(3)應(yīng)分情況討論:4月份不超過(guò)6m3,5月份10立方米以上;或4月份不超過(guò)6m3,5月份在6-10立方米之間;兩個(gè)月都在6-10立方米之間.
解:(1)(元);
(2),
∴應(yīng)收水費(fèi)為元.
因?yàn)?/span>月份用水量超過(guò)了月份,所以月份用水量少于.
①當(dāng)月份用水量少于時(shí),則月份用水量超過(guò),
∴,兩個(gè)月共交水費(fèi)(元);
②當(dāng)月份用水量大于或等于但不超過(guò)時(shí),則月份用水量不少于但不超過(guò),
∴、兩個(gè)月共交水費(fèi)(元);
③當(dāng)月份用水量超過(guò)但少于時(shí),則月份用水量超過(guò)但少于,
∴,兩個(gè)月共交水費(fèi)(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,畫(huà)一個(gè)長(zhǎng)和寬分別為、的長(zhǎng)方形,并將其按一定的方式進(jìn)行旋轉(zhuǎn).
你能得到幾種不同的圓柱體?
把一個(gè)平面圖形旋轉(zhuǎn)成幾何體,必須明確哪兩個(gè)條件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:在正方形ABCD中,以正方形的一個(gè)頂點(diǎn)A為頂點(diǎn),且過(guò)對(duì)角頂點(diǎn)C的拋物線(xiàn),稱(chēng)為這個(gè)正方形的以A為頂點(diǎn)的對(duì)角拋物線(xiàn).
(1)在平面直角坐標(biāo)系xOy中,點(diǎn)在軸正半軸上,點(diǎn)C在y軸正半軸上.
①如圖1,正方形OABC的邊長(zhǎng)為2,求以O(shè)為頂點(diǎn)的對(duì)角拋物線(xiàn);
②如圖2,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為a,其以O(shè)為頂點(diǎn)的對(duì)角拋物線(xiàn)的解析式為y= x2 , 求a的值;
(2)如圖3,正方形ABCD的邊長(zhǎng)為4,且點(diǎn)A的坐標(biāo)為(3,2),正方形的四條對(duì)角拋物線(xiàn)在正方形ABCD內(nèi)分別交于點(diǎn)M、P、N、Q,直接寫(xiě)出四邊形MPNQ的形狀和四邊形MPNQ的對(duì)角線(xiàn)的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,CE∥BF,
A. E、F、D在一直線(xiàn)上,BC與AD交于點(diǎn)O,且OE=OF,則圖中有全等三角形的對(duì)數(shù)為( )
A. 2
B. 3
C. 4
D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點(diǎn)G.
(1)求證:AE=CF;
(2)若∠ABE=55°,求∠EGC的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線(xiàn)段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的直徑,C,D是圓O上的點(diǎn),且OC∥BD,AD分別與BC,OC相交于點(diǎn)E,F(xiàn).則下列結(jié)論:
①AD⊥BD;②∠AOC=∠ABC;③CB平分∠ABD;④AF=DF;⑤BD=2OF.
其中一定成立的是( )
A.①③⑤
B.②③④
C.②④⑤
D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD中,E是AD上一點(diǎn),F是AB上的一點(diǎn),EF⊥EC,且EF=EC.
(1)求證:△AEF≌△DCE.
(2)若DE=4cm,矩形ABCD的周長(zhǎng)為32cm,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)﹣5+3﹣2
(2)﹣20﹣(﹣18)+(﹣14)+13
(3)5.6+(﹣0.9)+4.4+(﹣8.1)
(4)(+ )﹣﹣+(﹣)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com