【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒cm的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒1cm的速度向終點(diǎn)C運(yùn)動(dòng),將△PQC沿BC翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′,設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,若四邊形QPCP′為菱形,則t的值為_____.
【答案】2
【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)
∵∠C=90°,AC=BC=6cm,
∴△ABC為直角三角形,
∴∠A=∠B=45°,
∴△APE和△PBD為等腰直角三角形,
∴PE=AE=AP=tcm,BD=PD,
∴CE=AC﹣AE=(6﹣t)cm,
∵四邊形PECD為矩形,
∴PD=EC=(6﹣t)cm,
∴BD=(6﹣t)cm,
∴QD=BD﹣BQ=(6﹣2t)cm,
在Rt△PCE中,PC2=PE2+CE2=t2+(6﹣t)2,
在Rt△PDQ中,PQ2=PD2+DQ2=(6﹣t)2+(6﹣2t)2,
∵四邊形QPCP′為菱形,
∴PQ=PC,
∴t2+(6﹣t)2=(6﹣t)2+(6﹣2t)2,
∴t1=2,t2=6(舍去),
∴t的值為2.
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:多項(xiàng)式A=2x2﹣xy,B=x2+xy﹣6,求:
(1)4A﹣B;
(2)當(dāng)x=1,y=﹣2時(shí),4A﹣B的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線(xiàn)m經(jīng)過(guò)點(diǎn)A,BD⊥直線(xiàn)m,CE⊥直線(xiàn)m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線(xiàn)m上,并且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)拓展與應(yīng)用:如圖3,D、E是D、A、E三點(diǎn)所在直線(xiàn)m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)
互不重合),點(diǎn)F為∠BAC平分線(xiàn)上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果長(zhǎng)方形的一條邊等于3m+2n,另一條邊比它小m-n,這個(gè)長(zhǎng)方形的周長(zhǎng)為___
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2016年投入教育經(jīng)費(fèi)2500萬(wàn)元,預(yù)計(jì)2018年投入3600萬(wàn)元.設(shè)這兩年投入教育經(jīng)費(fèi)的年平均增長(zhǎng)百分率為x,則下列方程正確的是( )
A.25x2=3600B.2500(1+x)2=3600
C.2500(1+x%)2=3600D.2500(1+x)+ 2500(1+x)2=3600
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A=3b2﹣2a2+5ab,B=4ab﹣2b2﹣a2.
(1)化簡(jiǎn):3A﹣4B;
(2)當(dāng)a=1,b=﹣1時(shí),求3A﹣4B的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究(1)如圖1,把△ABC沿DE折疊,使點(diǎn)A落在點(diǎn)A’處,請(qǐng)你判斷∠1+∠2與∠A的關(guān)系?直接寫(xiě)出結(jié)論,不必說(shuō)明理由.
思考(2)如圖2,BI平分∠ABC,CI平分∠ACB,把△ABC折疊,使點(diǎn)A與點(diǎn)I重合,若∠1+∠2=130°,求∠BIC的度數(shù);
應(yīng)用(3)如圖3,在銳角△ABC中,BF⊥AC于點(diǎn)F,CG⊥AB于點(diǎn)G,BF、CG交于點(diǎn)H,把△ABC折疊使點(diǎn)A和點(diǎn)H重合,試探索∠BHC與∠1+∠2的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】月球的直徑約為3476000米,將數(shù)據(jù)3476000用科學(xué)記數(shù)法表示應(yīng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com