【題目】綜合與實踐

正方形內奇妙點及性質探究

定義:如圖1,在正方形中,以為直徑作半圓,以為圓心,為半徑作,與半圓交于點.我們稱點為正方形的一個奇妙點.過奇妙點的多條線段與正方形無論是位置關系還是數(shù)量關系,都具有不少優(yōu)美的性質值得探究.

性質探究:如圖2,連接并延長交于點,則為半圓的切線.

證明:連接

由作圖可知,

,∴是半圓的切線.

問題解決:

1)如圖3,在圖2的基礎上,連接.請判斷的數(shù)量關系,并說明理由;

2)在(1)的條件下,請直接寫出線段之間的數(shù)量關系;

3)如圖4,已知點為正方形的一個奇妙點,點的中點,連接并延長交于點,連接并延長交于點,請寫出的數(shù)量關系,并說明理由;

4)如圖5,已知點為正方形的四個奇妙點.連接,恰好得到一個特殊的趙爽弦圖.請根據(jù)圖形,探究并直接寫出一個不全等的幾何圖形面積之間的數(shù)量關系.

【答案】1,理由見解析;(2;(3,理由見解析;(4)答案不唯一,如:的面積等于正方形的面積;正方形的面積等于正方形面積的等.

【解析】

1)先提出猜想,在圖2以及上面結論的基礎上,根據(jù)全等三角形的性質、四邊形的內角和、鄰補角的性質可得出,再由邊邊邊定理可證得,然后利用全等三角形的性質、等式性質可得證結論;

2)由(1)可知,根據(jù)全等三角形的性質、線段的和差即可得到結論;

3)先提出猜想,添加輔助線構造出直角三角形,由(1)可知,則其正切值相等,再根據(jù)正方形的性質即可得證結論;

4)根據(jù)前面的結論結合趙爽弦圖可證得

,即可提出猜想.

解:(1)結論:

理由如下:

,

,

;

2)∵由(1)可知,、

,

∴線段、、之間的數(shù)量關系是;

3)結論:

理由:連接、,如圖:

由(1)可知,

∵點的中點

∵四邊形是正方形

;

4)延長于點,連接,如圖:

∵由前面的結論可知

∵此圖為趙爽弦圖即

同理可得、

∵四邊形是正方形

∴在中,

∴答案不唯一,例如,的面積等于正方形的面積;正方形的面積等于正方形面積的等等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的四個頂點分別在扇形OEF的半徑OEOF和弧EF上,且點A是線段OB的中點,若弧EF的長為π,則OD長為______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點EBC的中點,AEBD交于點P,FCD上一點,連接AF分別交BDDE于點M,N,且AFDE,連接PN,則以下結論中:①FCD的中點;②3AM=2DE;③tanEAF;④;⑤△PMN∽△DPE,正確的結論個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了解九年級學生的身體素質測試情況,隨機抽取了該市九年級部分學生的身體素質測試成績作為樣本,按(優(yōu)秀),(良好),(合格),(不合格)四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:

1)此次共調查了多少名學生?

2)將條形統(tǒng)計圖補充完整,并計算扇形統(tǒng)計圖中部分所對應的圓心角的度數(shù).

3)該市九年級共有9000名學生參加了身體素質測試,估計測試成績在良好以上(含良好)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)ymx2﹣(2m+1x+2m0),請判斷下列結論是否正確,并說明理由.

1)當m0時,函數(shù)ymx2﹣(2m+1x+2x1時,yx的增大而減;

2)當m0時,函數(shù)ymx2﹣(2m+1x+2圖象截x軸上的線段長度小于2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△AOB中,A-80),B0,),AC平分∠OAB,交y軸于點C,點Px軸上一點,⊙P經過點A、C,與x軸交于點D,過點CCEAB,垂足為E,EC的延長線交x軸于點F

1)求證:EF為⊙P的切線;

2)求⊙P的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;

2)分別以點CD為圓心,CD長為半徑作弧,交于點MN;

3)連接OMMN

根據(jù)以上作圖過程及所作圖形,下列結論中錯誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著生活水平的提高,人們對飲水品質的需求越來越高,某公司根據(jù)市場需求代理A,B兩種型號的凈水器,每臺A型凈水器比每臺B型凈水器進價多200元,用5萬元購進A型凈水器與用4.5萬元購進B型凈水器的數(shù)量相等

1)求每臺A型、B型凈水器的進價各是多少元?

2)該公司計劃購進AB兩種型號的凈水器共50臺進行試銷,其中A型凈水器為x臺,購買資金不超過9.8萬元,試銷時A型凈水器每臺售價2500元,B型凈水器每臺售價2180元,公司決定從銷售A型凈水器的利潤中按每臺捐獻a元作為公司幫扶貧困村飲水改造資金.若公司售完50臺凈水器并捐獻扶貧資金后獲得的最大利潤不低于20200元但不超過23000元,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)y2xy=﹣x的圖象分別為直線l1,l2,過點(1,0)作x軸的垂線交l1于點A1,過點A1y軸的垂線交l2于點A2,過點A2x軸的垂線交l1于點A3,過點A3y軸的垂線交l2于點A4,依次進行下去,則點A2019的坐標為(  )

A.21009,21010B.(﹣21009,21010

C.21009,﹣21010D.(﹣21009,﹣21010

查看答案和解析>>

同步練習冊答案