【題目】已知關于x的一元二次方程x2﹣(m+1x+m2+1)=0有兩個相等的實數(shù)根.

1)求m的值;

2)將y=﹣x2+m+1xm2+1)的圖象向左平移3個單位長度,再向上平移2個單位長度,寫出變化后函數(shù)的表達式;

3)在(2)的條件下,當直線y2x+n與變化后的圖象有公共點時,求n24n的最小值

【答案】(1)m的值為1;(2)y=﹣x2﹣4x﹣2;(3)﹣4.

【解析】

(1)根據(jù)判別式的意義得到△=(m+1)2﹣4m2+1)=0,然后解方程即可;

(2)把原拋物線解析式配成頂點式得到y=﹣(x﹣1)2,則它的頂點坐標為(1,0),利用點平移的規(guī)律得到平移后拋物線的頂點坐標為(﹣2,2),然后利用頂點式寫出變化后函數(shù)的表達式;

(3)根據(jù)題意方程﹣x2﹣4x﹣2=2x+n有實數(shù)解,則利用判別式的意義得到n≤7,再配方得到n2﹣4n=(n﹣2)2﹣4,然后根據(jù)二次函數(shù)的性質進行問題

1)△=(m+1)2﹣4m2+1)=0,解得m1m2=1,m的值為1;

(2)原拋物線解析式為y=﹣x2+2x﹣1,y=﹣(x﹣1)2,它的頂點坐標為(1,0),把點(1,0)向左平移3個單位長度,再向上平移2個單位長度后的對應點的坐標為(﹣2,2),所以變化后函數(shù)的表達式為y=﹣(x+2)2+2,y=﹣x2﹣4x﹣2;

(3)﹣x2﹣4x﹣2=2x+n,整理得x2+6x+n+2=0,△=62﹣4(n+2)≥0,解得n≤7,n2﹣4n=(n﹣2)2﹣4,所以當n=2,n2﹣4n的值最小,n2﹣4n最小值為﹣4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠?/span>:

(1)x2=49

(3)2x2+4x-3=0(公式法) (4)(x+8)(x+1)=-12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,對稱軸是直線x=1,下列結論abc>0;b2﹣4ac<0;a+b+c<0;2a+b=0.其中正確的是(  )

A. ①②③ B. ②④ C. ②③ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把ABC沿著AD方向平移,得到ABC,若兩個三角形重疊部分的面積為0.5cm2,則它移動的距離AA等于( 。

A.cmB.cmC.cmcmD. cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點.

(1)請求出拋物線的解析式;

(2)0<x<4時,請直接寫出y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一隧道的橫截面是由一段拋物線及矩形的三邊圍成的,隧道寬BC=10米,矩形部分高AB=3米,拋物線型的最高點E離地面OE=6米,按如圖建立一個以BCx軸,OEy軸的直角坐標系.

(1)求拋物線的解析式;

(2)如果該隧道內設有雙車道,現(xiàn)有一輛貨運卡車高4.5米,寬3米,這輛貨運卡車能順利通過隧道嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD的對角線AC,BD相交于點O,直角∠MPN的頂點P與點O重合,直角邊PM,PN分別與OA,OB重合,然后逆時針旋轉∠MPN,旋轉角為θ(0°<θ<90°),PM、PN分別交AB、BCE、F兩點,連接EFOB于點G,則下列結論中正確的是_____.

(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)在旋轉過程中,當△BEF與△COF的面積之和最大時,AE=;(4)OGBD=AE2+CF2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線的頂點為,與軸的一個交點在點(-3, 0)和(-2 ,0)之間,其部分圖象如圖,則以下結論:①<0;②<0;③=2;④方程有兩個相等的實數(shù)根,其中正確結論的個數(shù)為________個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖所示的正方形網(wǎng)格中,每個網(wǎng)格的單位長度為1,ABC的頂點均在格點上,根據(jù)所給的平面直角坐標系解答下列問題

(1)A點的坐標為________;B點的坐標為________;C點的坐標為________.

(2)將點AB、C的橫坐標保持不變,縱坐標分別乘以-1,分別得點A'、B'、C',并連接A'、B'、C'A' B' C',請畫出A' B' C'.

(3)A' B' C'ABC的位置關系是________.

查看答案和解析>>

同步練習冊答案