【題目】如圖,正方形ABCD中,AB=4,點E是BC上一點,且tan∠BAE=,點F是CD的中點,連接AE、BF將△ABE著點E按順時針方向旋轉,使點B落在BF上的B1處位置處,點A經(jīng)過旋轉落在A1點位置處,連接AA1交BF于點N.
(1)求證:∠BFC=∠A1 B1F;
(2)說明點N是AA1的中點;
(3)求AN的長.
【答案】(1)詳見解析; (2)詳見解析;(3).
【解析】試題分析:(1)已知四邊形ABCD是正方形,根據(jù)正方形的性質可得AB∥CD,即可得∠ABF=∠CFB,由旋轉的性質可得EB=EB1,根據(jù)等腰三角形的性質可得∠EBB1=∠EB1B,再由∠ABC=∠EB1A1=90°,即可得∠ABF+∠EBB′=90°,∠BB1E+∠A1B1F=90°,所以∠A1B1F=∠ABF=∠BFC;(2)作EP⊥BF,A1Q⊥BF,取BC的中點M,連接AB1,B1M,可得點P是BB1的中點,根據(jù)三角形的中位線定理可得EP∥MB1,即可得MB1⊥BB1;易證△BPE∽△BCF,即可求得BP=,EP=,從而求得BB1= ,再證明A,B1,M三點共線,即可得AB1=,再證明△AB1N≌△A1QN,即可得AN=A1N,從而證得N是AA1的中點;(3)由△AB1N≌△A1QN,可得B1N=B1Q=,根據(jù)勾股定理即可求得AN=.
試題解析:
(1)∵四邊形ABCD是正方形,
∴AB∥CD,
∴∠ABF=∠CFB,
∵EB=EB1,
∴∠EBB1=∠EB1B,
∵∠ABC=∠EB1A1=90°,
∴∠ABF+∠EBB′=90°,∠BB1E+∠A1B1F=90°,
∴∠A1B1F=∠ABF=∠BFC.
(2)作EP⊥BF,A1Q⊥BF,取BC的中點M,連接AB1,B1M,
∴點P是BB1的中點,
∵E是BM中點,
∴EP∥MB1,
∴MB1⊥BB1,
由旋轉得,△BPE∽△BCF,
∴BP=,EP=,
∵PB1=PB=,
∴BB1=,
∵sin∠FBC===,
∴∠AB1B=90°,
∴A,B1,M三點共線,
∴AB1=,
∵∠B1A1Q=∠BB1E=∠FBC,
∴△B1QA1∽△FCB,
∴B1Q=,A1Q==AB1,
∴△AB1N≌△A1QN,
∴AN=A1N,
∴N是AA1的中點.
(3)∵△AB1N≌△A1QN,
∴B1N=B1Q=,
根據(jù)勾股定理得,AN==.
科目:初中數(shù)學 來源: 題型:
【題目】已知把直線y=kx+b(k≠0)沿著y軸向上平移3個單位后,得到直線y=﹣2x+5.
(1)求直線y=kx+b(k≠0)的解析式;
(2)求直線y=kx+b(k≠0)與坐標軸圍成的三角形的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)碼產(chǎn)品專賣店的一塊攝像機支架如圖所示,將該支架打開立于地面MN上,主桿AC與地面垂直,調節(jié)支架使得腳架BE與主桿AC的夾角∠CBE=45°,這時支架CD與主桿AC的夾角∠BCD恰好等于60°,若主桿最高點A到調節(jié)旋鈕B的距離為40cm.支架CD的長度為30cm,旋轉鈕D是腳架BE的中點,求腳架BE的長度和支架最高點A到地面的距離.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x﹣4與x軸交于點A,以OA為斜邊在x軸上方作等腰Rt△OAB,并將Rt△AOB沿x軸向右平移,當點B落在直線y=x﹣4上時,Rt△OAB掃過的面積是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用同樣大小的黑色棋子按如圖所示的規(guī)律擺放:
(1)分別寫出第6、7兩個圖形各有多少顆黑色棋子?
(2)寫出第n個圖形黑色棋子的顆數(shù)?
(3)是否存在某個圖形有1020顆黑色棋子?若存在,求出是第幾個圖形;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點H、G分別是邊CD、BC上的動點.連接AH、HG,點E為AH的中點,點F為GH的中點,連接EF.則EF的最大值與最小值的差為( )
A. 1 B. ﹣1 C. D. 2﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,半徑OA⊥OB,過OA的中點C作FD∥OB交⊙O于D、F兩點,且CD=,以O為圓心,OC為半徑作,交OB于E點.則圖中陰影部分的面積為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下面的點陣圖和相應的等式,探究其中的規(guī)律:
(1)在④后面的橫線上寫出相應的等式:
①1=12;②1+3=22;③1+3+5=32;④ ;⑤1+3+5+7+9=52;…
(2)請寫出第n個等式;
(3)利用(2)中的等式,計算21+23+25+…+99.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com