【題目】如圖,在菱形 ABCD 中,AB=2,∠DAB=60°,點 E 是 AD 邊的中點,點 M 是 AB 邊上的一個動點(不與點 A 重合), 延長 ME 交 CD 的延長線于點 N,連接MD,AN.
(1)求證:四邊形 AMDN 是平行四邊形.
(2)當(dāng) AM 的值為何值時,四邊形 AMDN 是矩形?請說明理由.
【答案】(1)見解析; (2) AM =1.
【解析】
(1)根據(jù)菱形的性質(zhì)可得ND∥AM,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠NDE=∠MAE,∠DNE=∠AME,根據(jù)中點的定義求出DE=AE,然后利用“角角邊”證明△NDE和△MAE全等,根據(jù)全等三角形對應(yīng)邊相等得到ND=MA,然后利用一組對邊平行且相等的四邊形是平行四邊形證明;
(2)根據(jù)矩形的性質(zhì)得到DM⊥AB,再求出∠ADM=30°,然后根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半解答.
(1)證明:∵四邊形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
∵點E是AD中點,
∴DE=AE,
在△NDE和△MAE中,
,
∴△NDE≌△MAE(AAS),
∴ND=MA,
∴四邊形AMDN是平行四邊形;
(2)AM=1.
理由如下:∵四邊形ABCD是菱形,
∴AD=AB=2,
∵平行四邊形AMDN是矩形,
∴DM⊥AB,
即∠DMA=90°,
∵∠DAB=60°,
∴∠ADM=30°,
∴AM=AD=1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。
A. ①和② B. ②和③ C. ①和③ D. ②和④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一條河的北岸有兩個目標(biāo)M、N,現(xiàn)在位于它的對岸設(shè)定兩個觀測點A、B.已知AB∥MN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.
(1)求點M到AB的距離;(結(jié)果保留根號)
(2)在B點又測得∠NBA=53°,求MN的長.(結(jié)果精確到1米)
(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰三角形ABC中,∠A、∠B、∠C的對邊分別為a、b、c,已知a=3,b和c是關(guān)于x的方程x2+mx+2-m=0的兩個實數(shù)根.
(1)求△ABC的周長.
(2)求△ABC的三邊均為整數(shù)時的外接圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.
(1)求證:PA是⊙O的切線;
(2)若PD=,求⊙O的直徑;
(3)在(2)的條件下,若點B等分半圓CD,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2﹣2x+m+1與x軸交于A(x1 , 0)、B(x2 , 0)兩點,且x1<0,x2>0,與y軸交于點C,頂點為P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的兩個實根,則x1+x2=﹣ ,x1x2= )
(1)求m的取值范圍;
(2)若OA=3OB,求拋物線的解析式;
(3)在(2)中拋物線的對稱軸PD上,存在點Q使得△BQC的周長最短,試求出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一元二次方程ax2+bx+c=0 的兩根 x1,x2均為正數(shù),其中x1>x2,且滿足1<x1﹣x2<2,那么稱這個方程有“友好根”.
(1)方程(x﹣)(x﹣)=0_____“友好根”(填:“有”或“沒有”);
(2)已知關(guān)于x的 x2﹣(t﹣1)x+t﹣2=0有“友好根”,求 t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向 A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二: 同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)
(1)若顧客選擇方式一,則享受 9 折優(yōu)惠的概率為_______;
(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線.
(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com