【題目】如圖,已知△ABC中, 厘米, 厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時,點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.當(dāng)點(diǎn)Q的運(yùn)動速度為_______ 厘米/秒時,能夠在某一時刻使△BPD與△CQP全等.
【答案】4或6
【解析】設(shè)點(diǎn)P、Q的運(yùn)動時間為,點(diǎn)Q的速度為厘米/秒,由已知易得:BD=12cm,BP=4,PC=16-4,CQ= ;
∵AB=AC,
∴∠B=∠C,
∴存在兩種情形使△BPD與△CQP全等,
(1)當(dāng)CQ=BD=12cm,BP=CP=8cm時,兩三角形全等,此時BP=4=8,解得=2,
∵CQ= =12,
∴,解得;
(2)當(dāng)PC=BD=12cm,CQ=BP時,兩三角形全等,
∵BP=4=BC-PC=16-12=4,
∴=1,
又∵CQ= =BP=4,
∴;
綜合(1)、(2)可得,當(dāng)點(diǎn)Q的運(yùn)動速度為4厘米/秒或6厘米/秒時,能夠在某一時刻使△BPD和△CQP全等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點(diǎn)P是⊙O上不與A,B重合的一個動點(diǎn),延長PA到C,使AC=AP,點(diǎn)D為⊙O上一點(diǎn),且滿足AD∥PB,射線CD交PB延長線于點(diǎn)E.
(1)求證:△PAB≌△ACD;
(2)填空:
①若AB=6,則四邊形ABED的最大面積為 ;
②若射線CD與⊙O的另一個交點(diǎn)為F,則當(dāng)∠PAB的度數(shù)為 時,以O(shè),A,D,F(xiàn)為頂點(diǎn)的四邊形為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角從標(biāo)系中,A點(diǎn)坐標(biāo)為(0,4),B點(diǎn)坐標(biāo)為(2,0),C(m,6)為反比例函數(shù)y=圖象上一點(diǎn).將△AOB繞B點(diǎn)旋轉(zhuǎn)至△A′O′B處.
(1)求m的值;
(2)若O′落在OC上,連接AA′交OC與D點(diǎn).①求證:四邊形ACA′O′為平行四邊形; ②求CD的長度;
(3)直接寫出當(dāng)AO′最短和最長時A′點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的其中兩邊長分別為4,9,則這個等腰三角形的周長是( )
A. 13 B. 17 C. 22 D. 17或22
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,請按照要求回答問題:
(1) 數(shù)軸上的點(diǎn)C表示的數(shù)是 線段AB的中點(diǎn)D表示的數(shù)是 ﹣2 ;
(2)線段AB的中點(diǎn)D與線段BC的中點(diǎn)E的距離DE等于多少?
(3)在數(shù)軸上方有一點(diǎn)M,下方有一點(diǎn)N,且∠ABM=120°,∠CBN=60°,請畫出示意圖,判斷BC能否平分∠MBN,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列寫法正確的是( )
A. 過點(diǎn)A、B畫直線ab B. 直線AB、CD相交于點(diǎn)m
C. 直線ab、cd相交于點(diǎn)M D. 直線a、b相交于點(diǎn)M
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)實驗課上,李靜同學(xué)剪了兩張直角三角形紙片,進(jìn)行如下的操作:
操作一:如圖1,將Rt△ABC紙片沿某條直線折疊,使斜邊兩個端點(diǎn)A與B重合,折痕為DE.
(1)如果AC=5cm,BC=7cm,可得△ACD的周長為 ;
(2)如果∠CAD:∠BAD=1:2,可得∠B的度數(shù)為 ;
操作二:如圖2,李靜拿出另一張Rt△ABC紙片,將直角邊AC沿直線CD折疊,使點(diǎn)A與點(diǎn)E重合,若AB=10cm,BC=8cm,請求出BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分線,OM是∠BOC的平分線.
(1)求∠MON的大小;
(2)當(dāng)銳角∠AOC的大小發(fā)生改變時,∠MON的大小是否發(fā)生改變?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com