如圖所示,已知ABCD的對(duì)角線相交于點(diǎn)O,OE⊥AD于E,OF⊥BC于F.求證:OE=OF.

答案:
解析:
<noscript id="nf7fg"><progress id="nf7fg"></progress></noscript><span id="nf7fg"></span>
    1. <i id="nf7fg"><del id="nf7fg"></del></i>
      1.   證明:∵四邊形ABCD是平行四邊形
        提示:

        練習(xí)冊(cè)系列答案
        相關(guān)習(xí)題

        科目:初中數(shù)學(xué) 來(lái)源: 題型:

        22、如圖所示,已知△ABC是邊長(zhǎng)為6cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速運(yùn)動(dòng),其中點(diǎn)P運(yùn)動(dòng)的速度是1m/s,點(diǎn)Q運(yùn)動(dòng)的速度是2m/s,當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t s,解答下列問(wèn)題:
        (1)當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),PQ與AB的位置關(guān)系如何?請(qǐng)說(shuō)明理由.
        (2)在點(diǎn)P與點(diǎn)Q的運(yùn)動(dòng)過(guò)程中,△BPQ是否能成為等邊三角形?若能,請(qǐng)求出t,若不能,請(qǐng)說(shuō)明理由.

        查看答案和解析>>

        科目:初中數(shù)學(xué) 來(lái)源: 題型:

        9、如圖所示,已知△ABC與△CDA關(guān)于點(diǎn)O對(duì)稱,過(guò)O任作直線EF分別交AD、BC于點(diǎn)E、F,下面的結(jié)論:(1)點(diǎn)E和點(diǎn)F;B和D是關(guān)于中心O的對(duì)稱點(diǎn);(2)直線BD必經(jīng)過(guò)點(diǎn)O;(3)四邊形ABCD是中心對(duì)稱圖形;(4)四邊形DEOC與四邊形BFOA的面積必相等;(5)△AOE與△COF成中心對(duì)稱,其中正確的個(gè)數(shù)為( 。

        查看答案和解析>>

        科目:初中數(shù)學(xué) 來(lái)源: 題型:

        如圖所示,已知△ABC內(nèi)接于⊙O,AD平分∠BAC交BC于點(diǎn)P、交⊙O于點(diǎn)D,連接DB、DC,在AD上取一點(diǎn)精英家教網(wǎng)I,使DI=DB.
        (1)求證:DI2=DP•AD;    
        (2)求證:∠ABI=∠CBI;
        (3)若⊙O的半徑為
        3
        ,∠BAC=120°,求△BDC的面積?

        查看答案和解析>>

        科目:初中數(shù)學(xué) 來(lái)源: 題型:

        如圖所示,已知△ABC≌△DCB,是其中AB=DC,試說(shuō)明∠ABD=∠ACD.

        查看答案和解析>>

        科目:初中數(shù)學(xué) 來(lái)源: 題型:

        如圖所示,已知△ABC:
        (1)過(guò)A畫出中線AD;
        (2)畫出角平分線CE;
        (3)作AC邊上的高BF.

        查看答案和解析>>

        同步練習(xí)冊(cè)答案