精英家教網(wǎng)如圖,將矩形ABCD(AB<AD)沿BD折疊后,點C落在點E處,且BE交AD于點F.
(1)若AB=4,BC=8,求DF的長;
(2)當DA平分∠EDB時,求
ABBC
的值.
分析:(1)易證BF=FD,在直角△ABF中,根據(jù)勾股定理就可以求出DF的長.
(2)已知DA平分∠EDB,根據(jù)矩形的角是直角,就可以求出∠ADB,∠BDC的度數(shù),就可以把求兩線段的比值的問題轉(zhuǎn)化為三角函數(shù)的問題.
解答:解:(1)∵AD∥BC,
∴∠DBC=∠FDB,
又∵∠DBC=∠DBE,
∴∠FDB=∠FBD,
∴BF=FD,
設(shè)AF=x,則BF=DF=8-x,
在Rt△ABF中,根據(jù)勾股定理得到42+x2=(8-x)2,
解得x=3,
∴DF=8-3=5;

(2)∵DA平分∠EDB,
即∠EDA=∠ADB,
設(shè)∠EDA=∠ADB=y°,則∠EDB=2y°,
∴∠BDC=2y°,
∵∠ADC=90°,
∴3y=90°,
解得y=30°,
∴∠DBC=30°,
在Rt△CDB中,tan∠DBC=
CD
BC
=tan30°=
3
3

又∵AB=CD,
AB
BC
=
3
3
點評:本題主要根據(jù)折疊的性質(zhì),得到BF=DF,從而根據(jù)勾股定理解決問題.并且本題利用了三角函數(shù),把求兩線段比值的問題轉(zhuǎn)化為求三角函數(shù)的值的問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)90°后,得到矩形AB′C′D′,如果CD=2DA=2,那么CC′=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,將矩形ABCD折疊,AE是折痕,點D恰好落在BC邊上的點F處,量得∠BAF=50°,那么∠DEA等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,將矩形ABCD的BC邊折起,使點B落在DC上的點F處得折痕AE,若∠DFA為40°,則∠EAF的度數(shù)是( 。
A、15°B、20°C、25°D、30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,將矩形ABCD沿直線EF對折,點D恰好與BC邊上的點H重合,∠GFP=62°,那么∠EHF的度數(shù)等于
56
°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將矩形ABCD繞C點順時針旋轉(zhuǎn)到矩形CEFG,點E在CD上,若AB=8,BC=6,則旋轉(zhuǎn)過程中點A所經(jīng)過的路徑長為
.(結(jié)果不取近似值).

查看答案和解析>>

同步練習冊答案