【題目】已知,如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.動點P從點A出發(fā),沿AB向點B運動,動點Q從點B出發(fā),沿BC向點C運動,如果動點P以2cm/s,Q以1cm/s的速度同時出發(fā),設(shè)運動時間為t(s),解答下列問題:
(1)t為______時,△PBQ是等邊三角形?
(2)P,Q在運動過程中,△PBQ的形狀不斷發(fā)生變化,當(dāng)t為何值時,△PBQ是直角三角形?說明理由.
【答案】(1)12;(2)當(dāng)t為9或時,△PBQ是直角三角形,理由見解析.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)解答即可;
(2)分兩種情況利用直角三角形的性質(zhì)解答即可.
(1)要使,△PBQ是等邊三角形,即可得:PB=BQ,
∵在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.
∴AB=36cm,
可得:PB=36-2t,BQ=t,
即36-2t=t,
解得:t=12
故答案為;12
(2)當(dāng)t為9或時,△PBQ是直角三角形,
理由如下:
∵∠C=90°,∠A=30°,BC=18cm
∴AB=2BC=18×2=36(cm)
∵動點P以2cm/s,Q以1cm/s的速度出發(fā)
∴BP=AB-AP=36-2t,BQ=t
∵△PBQ是直角三角形
∴BP=2BQ或BQ=2BP
當(dāng)BP=2BQ時,
36-2t=2t
解得t=9
當(dāng)BQ=2BP時,
t=2(36-2t)
解得t=
所以,當(dāng)t為9或時,△PBQ是直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點E、F同時由A、C兩點出發(fā),分別沿AB、CB方向向點B勻速移動(到點B為止),點E的速度為1cm/s,點F的速度為2cm/s,經(jīng)過t秒△DEF為等邊三角形,則t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點的坐標(biāo)滿足:
(1)求出點的坐標(biāo)
(2)如圖1,連接,點在四邊形外面且在第一象限,再連,則,求點坐標(biāo).
(3)如圖2所示,為線段上一動點,(在右側(cè))為上一動點,使軸始終平分,連且,那么是否為定值?若為定值,請直接寫出定值,若不是,請簡單說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是( )
A. 角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上
B. 角平分線上的點到這個角兩邊的距離相等
C. 三角形三條角平分線的交點到三條邊的距離相等
D. 以上均不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明:
已知:如圖,點 D,E,F 分別在線段 AB,BC,AC 上,連接 DE、EF,DM 平分∠ADE 交 EF 于點 M,∠1+∠2=180°. 求證:∠B =∠BED.
證明:∵∠1+∠2=180°(已知),
又∵∠1+∠BEM=180°(平角定義),
∴∠2=∠BEM( ),
∴DM∥ ( ).
∴∠ADM =∠B( ),
∠MDE =∠BED( ).
又∵DM 平分∠ADE (已知),
∴∠ADM =∠MDE (角平分線定義).
∴∠B =∠BED( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增加環(huán)保意識,某社區(qū)計劃開展一次“減碳環(huán)保,減少用車時間”的宣傳活動,對部分家庭五月份的平均每天用車時間進行了一次抽樣調(diào)查,并根據(jù)收 集的數(shù)據(jù)繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)本次抽樣調(diào)查了多少個家庭?
(2)將圖①中的頻數(shù)分布直方圖補充完整;
(3)求用車時間在 1 小時~1.5 小時的部分對應(yīng)的扇 形圓心角的度數(shù);
(4)若該社區(qū)有車家庭有 1 600 個,請你估計該社區(qū)用車時間不超過 1.5 小時的約有多少個家庭.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,有點 A(a﹣1,3),B(a+2,2a﹣1)
(1)若線段AB∥x軸,求點A、B的坐標(biāo);
(2)當(dāng)點B到x軸的距離是點A到y軸的距離2倍時,求點B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在何種數(shù)量關(guān)系呢?
已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個外角,試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系.
探究二:三角形的一個內(nèi)角與另兩個內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?
已知:如圖2,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系.
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖3,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了普及環(huán)保知識,增強環(huán)保意識,某大學(xué)某專業(yè)學(xué)院從本專業(yè)450人中隨機抽取了30名學(xué)生參加環(huán)保知識測試,得分十分制情況如圖所示:
這30名學(xué)生的測試成績的眾數(shù),中位數(shù),平均數(shù)分別是多少?
學(xué)院準(zhǔn)備拿出2000元購買獎品獎勵測試成績優(yōu)秀的學(xué)生,獎品分為三等,成績?yōu)?/span>10分的為一等,成績?yōu)?/span>8分和9分的為二等,成績?yōu)?/span>7分的為三等;學(xué)院要求一等獎獎金,二等獎獎金,三等獎獎金分別占、、,問每種獎品的單價各為多少元?
如果該專業(yè)學(xué)院的學(xué)生全部參加測試,在問的獎勵方案下,請你預(yù)測該專業(yè)學(xué)院將會拿出多少獎金來獎勵學(xué)生,其中一等獎獎金為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com