(2006•曲靖)如圖,從⊙O外一點A作⊙O的切線AB、AC,切點分別為B、C,且⊙O直徑BD=6,連接CD、AO.
(1)求證:CD∥AO;
(2)設(shè)CD=x,AO=y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若AO+CD=11,求AB的長.

【答案】分析:(1)欲證CD∥AO,根據(jù)平行線的判斷,證明∠DCB=∠OEB即可;
(2)由題可知求y與x之間的函數(shù)關(guān)系式,可以通過△BDC∽△AOB的比例關(guān)系式得出;
(3)求AB的長,因為AB是⊙O的切線,可先求OA,OB的長.AO+CD=11結(jié)合(2),解方程組并且檢驗,從而求解.
解答:(1)證明:連接BC交OA于E點,
∵AB、AC是⊙O的切線,
∴AB=AC,∠1=∠2.
∴AE⊥BC.
∴∠OEB=90°.
∵BD是⊙O的直徑,
∴∠DCB=90°.
∴∠DCB=∠OEB.
∴CD∥AO.

(2)解:∵CD∥AO,
∴∠3=∠4.
∵AB是⊙O的切線,DB是直徑,
∴∠DCB=∠ABO=90°.
∴△BDC∽△AOB.
=
=
∴y=
∴0<x<6.

(3)解:由已知和(2)知:,(8分)
把x、y看作方程z2-11z+18=0的兩根,
解這個方程得z=2或z=9,
(舍去).
∴AB===
點評:本題綜合考查的是平行線的判斷,切線長定理,相似三角形,勾股定理及解方程組的綜合運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點,
(1)若拋物線l2與l1關(guān)于x軸對稱,求l2的解析式;
(2)若點B是拋物線l1上的一動點(B不與A、C重合),以AC為對角線,A、B、C三點為頂點的平行四邊形的第四個頂點定為D,求證:點D在l2上;
(3)探索:當點B分別位于l1在x軸上、下兩部分的圖象上時,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山東省煙臺市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點,
(1)若拋物線l2與l1關(guān)于x軸對稱,求l2的解析式;
(2)若點B是拋物線l1上的一動點(B不與A、C重合),以AC為對角線,A、B、C三點為頂點的平行四邊形的第四個頂點定為D,求證:點D在l2上;
(3)探索:當點B分別位于l1在x軸上、下兩部分的圖象上時,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年云南省玉溪市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點,
(1)若拋物線l2與l1關(guān)于x軸對稱,求l2的解析式;
(2)若點B是拋物線l1上的一動點(B不與A、C重合),以AC為對角線,A、B、C三點為頂點的平行四邊形的第四個頂點定為D,求證:點D在l2上;
(3)探索:當點B分別位于l1在x軸上、下兩部分的圖象上時,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年云南省曲靖市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點,
(1)若拋物線l2與l1關(guān)于x軸對稱,求l2的解析式;
(2)若點B是拋物線l1上的一動點(B不與A、C重合),以AC為對角線,A、B、C三點為頂點的平行四邊形的第四個頂點定為D,求證:點D在l2上;
(3)探索:當點B分別位于l1在x軸上、下兩部分的圖象上時,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案