【題目】已知:用3輛A型車和2輛B型車載滿貨物一次可運貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運貨l8噸,某物流公刊現(xiàn)有35噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.
根據(jù)以上信息,解答下列問題:
(1)l輛A型車和l輛B型車都載滿貨物一次可分別運貨多少噸?
(2)請你幫該物流公司設(shè)計租車方案;
【答案】(1)1輛A型車輛裝滿貨物一次可運3噸,1輛B型車裝滿貨物一次可運4噸.(2)有3種租車方案:方案一:A型車9輛,B型車2輛;方案二:A型車5輛,B型車5輛;方案三:A型車1輛,B型車8輛.
【解析】
(1)根據(jù)“用3輛A型車和2輛B型車載滿貨物一次可運貨17噸”“用2輛A型車和3輛B型車載滿貨物一次可運貨18噸”,分別得出等式方程,組成方程組求出即可;
(2)由題意理解出:3a+4b=35,解此二元一次方程,求出其整數(shù)解,得到三種租車方案.
(1)設(shè)每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,
由題意列方程組為:
解得
答:1輛A型車輛裝滿貨物一次可運3噸,1輛B型車裝滿貨物一次可運4噸.
(2)由題意得:3a+4b=35
∵a、b都是整數(shù)
∴或或
答:有3種租車方案:
方案一:A型車9輛,B型車2輛;
方案二:A型車5輛,B型車5輛;
方案三:A型車1輛,B型車8輛.
科目:初中數(shù)學 來源: 題型:
【題目】完成下列推理論證過程:
如圖,已知∠A=∠EDF,∠C=∠F,
求證:BC∥EF
證明:∵∠A=∠EDF( )
∴________∥________( )
∴∠C=∠BGD( )
又∵∠C=∠F ( 已知 )
∴_______=∠F(等量代換 )
∴BC∥EF( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為18,cosB= ,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的頂點坐標分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應(yīng)點為D,拋物線y=ax2﹣10ax+c經(jīng)過點C,頂點M在直線BC上.
(1)證明四邊形ABCD是菱形,并求點D的坐標;
(2)求拋物線的對稱軸和函數(shù)表達式;
(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:
①c>0;
②若點B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點,則y1<y2;
③2a﹣b=0;
④ <0,
其中,正確結(jié)論的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長CB1交直線l于點A1 , 作正方形A1B1C1B2 , 延長C1B2交直線l于點A2 , 作正方形A2B2C2B3 , 延長C2B3交直線l于點A3 , 作正方形A3B3C3B4 , …,依此規(guī)律,則A2016A2017= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰Rt△ACB,∠ACB=90°,AC=BC,點A、C分別在x軸、y軸的正半軸上.
(1)如圖1,求證:∠BCO=∠CAO
(2)如圖2,若OA=5,OC=2,求B點的坐標
(3)如圖3,點C(0,3),Q、A兩點均在x軸上,且S△CQA=18.分別以AC、CQ為腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,連接MN交y軸于P點,OP的長度是否發(fā)生改變?若不變,求出OP的值;若變化,求OP的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某人到一家快遞公司辦理環(huán)江香米(簡稱香米)的快遞托運,重量為千克.快遞公司收取托運費方案如下:
凡物品重量不超過10千克的,按2元/千克收取托運費;當物品重量超過10千克的,超出部分按3元/千克加收托運費.
(1)寫出千克香米的托運費的表達式 (用含字母的式子表示);
(2)若托運香米重量為千克時,求出這筆托運費.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com