【題目】已知:如圖,AC∥BD,折線AMB夾在兩條平行線間.(1)判斷∠M,∠A,∠B的關(guān)系;(2)請你嘗試改變問題中的某些條件,探索相應(yīng)的結(jié)論.建議:①折線中折線段數(shù)量增加到n條(n=3,4,…);
②可如圖1,圖2,或M點在平行線外側(cè).
【答案】見解析
【解析】
試題(1)過點M作ME∥AC,再根據(jù)平行線的性質(zhì)進(jìn)行解答即可;
(2)根據(jù)題意可假設(shè)點M在平行線外,畫出圖形,再根據(jù)平行線的性質(zhì)及三角形內(nèi)角和定理求解.
試題解析:
(1)過點M作ME∥AC,
∵AC∥BD,
∴AC∥BD∥ME,
如圖1所示:
∵AC∥ME,
∴∠A=∠1,
∵BD∥ME,
∴∠B=∠2,
∴∠1+∠2=∠A+∠B,即∠AMB=∠A+∠B;
如圖2所示:
∵AC∥ME,
∴∠A+∠3=180°,
∵BD∥ME,
∴∠B+∠4=180°,
∴∠A+∠B+∠3+∠4=360°,即∠A+∠B=360°-∠AMB;
(2)如圖③所示:
延長CA交BM于點E,
∵AC∥BD,
∴∠B=∠AEM,
∵∠CAM是△AEM的外角,
∴∠M+∠B=∠CAM.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】―拋物線與x軸的交點是A(-2,0),B(1,0),且經(jīng)過點C(2,8).
(1)求該拋物線的解析式;
(2)求該拋物線的頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,M,N,P,R分別是數(shù)軸上的四個整數(shù)所對應(yīng)的點,其中有一個點是原點,并且,MN=NP=PR=1,數(shù)a對應(yīng)的點在M和N之間,數(shù)b對應(yīng)的點在P和R之間,若|a|+|b|=2,則原點是(填M,N,P,R中的一個或幾個)_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知、、是數(shù)軸上三點,點表示的數(shù)為3,,。
(1)數(shù)軸上點表示的數(shù)為,點表示的數(shù)為。
(2)動點、分別從、同時出發(fā),點以每秒2個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,點以每秒1個單位長度的速度沿數(shù)軸向左勻速運(yùn)動,為的中點,點在線段上,且,設(shè)運(yùn)動時間為()秒。
①求數(shù)軸上、表示的數(shù)(用含的式子表示);
②為何值時,原點恰好是線段的中點;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)中,△ABC和△ADE都是等腰直角三角形,∠ACB和∠D都是直角,點C在AE上,△ABC繞著A點經(jīng)過逆時針旋轉(zhuǎn)后能夠與△ADE重合,再將圖(1)作為“基本圖形”繞著A點經(jīng)過逆時針旋轉(zhuǎn)得到圖(2).兩次旋轉(zhuǎn)的角度分別為( )
A.45°,90°B.90°,45°C.60°,30°D.30°,60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點都在格點上,點A的坐標(biāo)為(2,4)
(1)畫出△ABC先向左平移1個單位,再向下平移4個單位得到的△A1B1C1,寫出點A1的坐標(biāo)____________
(2)畫出△A1B1C1繞原點O順時針旋轉(zhuǎn)90°,得到△A2B2C2,寫出點A2的坐標(biāo)_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格(小正方形的邊長為1,小正方形的頂點叫格點),請在所給網(wǎng)格中按下列要求操作:
(1)請在網(wǎng)格中建立平面直角坐標(biāo)系,使A點坐標(biāo)為(-2,4),B點坐標(biāo)為(-4,2);
(2)按(1)中的直角坐標(biāo)系在第二象限內(nèi)的格點上找點C(C點的橫坐標(biāo)大于-3),使點C與線段AB組成一個以AB為底的等腰三角形,則C點坐標(biāo)是______,△ABC的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以∠AOB的頂點O為端點引射線OP,使∠AOP:∠BOP=3:2,若∠AOB=20°,則∠AOP的度數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(2,2)是雙曲線上一點,點B是雙曲線上位于點A右下方的另一點,C是x軸上的點,且△ABC是以∠B為直角的等腰直角三角形,則點B的坐標(biāo)是__________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com