【題目】到△ABC的三條邊距離相等的點(diǎn)是△ABC的(
A.三條中線交點(diǎn)
B.三條角平分線交點(diǎn)
C.三條高的交點(diǎn)
D.三條邊的垂直平分線交點(diǎn)

【答案】B
【解析】解:∵到△ABC的三條邊距離相等, ∴這點(diǎn)在這個(gè)三角形三條角平分線上,
即這點(diǎn)是三條角平分線的交點(diǎn).
故選B.
由于角平分線上的點(diǎn)到角的兩邊的距離相等,而已知一點(diǎn)到△ABC的三條邊距離相等,那么這樣的點(diǎn)在這個(gè)三角形的三條角平分線上,由此即可作出選擇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位長(zhǎng)度,ABC的三個(gè)頂點(diǎn)的位置。如圖所示,

現(xiàn)將ABC平移后得EDF,使點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)A對(duì)應(yīng)點(diǎn)為點(diǎn)E

1)畫出EDF;

2)線段BDAE有何關(guān)系? ____________;

3)連接CDBD,則四邊形ABDC的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y1=x+m與雙曲線y2=交于點(diǎn)A、B,已知點(diǎn)A、B的橫坐標(biāo)為2和﹣1.

(1)求k的值及直線與x軸的交點(diǎn)坐標(biāo);

(2)直線y=2x交雙曲線y=于點(diǎn)C、D(點(diǎn)C在第一象限)求點(diǎn)C、D的坐標(biāo);

(3)設(shè)直線y=ax+b與雙曲線y=(ak≠0)的兩個(gè)交點(diǎn)的橫坐標(biāo)為x1、x2,直線與 x軸交點(diǎn)的橫坐標(biāo)為x0,結(jié)合(1)、(2)中的結(jié)果,猜想x1、x2、x0之間的等量關(guān)系并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線y=﹣x+2分別交x、y軸于點(diǎn)A、B,點(diǎn)C為線段OA的中點(diǎn),動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度向終點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以個(gè)單位長(zhǎng)度/秒的速度向終點(diǎn)B運(yùn)動(dòng).過(guò)點(diǎn)Q作QMAB交x軸于點(diǎn)M,動(dòng)點(diǎn)P、Q同時(shí)出發(fā),其中一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,PM的長(zhǎng)為y個(gè)單位長(zhǎng)度.

(1)BCO= °;

(2)求y關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍;

(3)是否存在時(shí)間t,使得以PC為直徑的D與直線QM相切?若存在,求t的值;不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】湘潭盤龍大觀園開園啦!其中杜鵑園的門票售價(jià)為:成人票每張50元,兒童票每張30元.如果某日杜鵑園售出門票100張,門票收入共4000元.那么當(dāng)日售出成人票 張.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩種水稻試驗(yàn)田連續(xù)5年的平均單位面積產(chǎn)量如下:(單位:噸/公頃)

品種

第1年

第2年

第3年

第4年

第5

9.8

9.9

10.1

10

10.2

9.4

10.3

10.8

9.7

9.8

(1)哪種水稻的平均單位面積產(chǎn)量比較高?

(2)哪種水稻的產(chǎn)量比較穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x的2倍的相反數(shù)”用代數(shù)式表示為 _________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰△ABC中,AB=AC,∠A=50°,則∠B=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列式子成立的是( )
A.﹣1+1=0
B.﹣1﹣1=0
C.0﹣5=5
D.(+5)﹣(﹣5)=0

查看答案和解析>>

同步練習(xí)冊(cè)答案