【題目】對一組數據:﹣2,1,2,1,下列說法不正確的是( )
A.平均數是1
B.眾數是1
C.中位數是1
D.極差是4
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經過點A的⊙O與BC相切于點D,交AB于點E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,雙曲線y= 經過ABCD的頂點B,D.點D的坐標為(2,1),點A在y軸上,且AD∥x軸,SABCD=5.
(1)填空:點A的坐標為;
(2)求雙曲線和AB所在直線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,直線y=﹣ x+1交y軸于點B,交x軸于點A,拋物線y=﹣ x2+bx+c經過點B,與直線y=﹣ x+1交于點C(4,﹣2).
(1)求拋物線的解析式;
(2)如圖,橫坐標為m的點M在直線BC上方的拋物線上,過點M作ME∥y軸交直線BC于點E,以ME為直徑的圓交直線BC于另一點D,當點E在x軸上時,求△DEM的周長.
(3)將△AOB繞坐標平面內的某一點按順時針方向旋轉90°,得到△A1O1B1 , 點A,O,B的對應點分別是點A1 , O1 , B1 , 若△A1O1B1的兩個頂點恰好落在拋物線上,請直接寫出點A1的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在藝術節(jié)選拔節(jié)目過程中,從備選的“街舞”、“爵士”、“民族”、“拉丁”四種類型舞蹈中,選擇一種學生最喜愛的舞蹈,為此,隨機調查了本校的部分學生,并將調查結果繪制成如下統(tǒng)計圖表(每位學生只選擇一種類型),根據統(tǒng)計圖表的信息,解答下列問題:
類型 | 民族 | 拉丁 | 爵士 | 街舞 |
據點百分比 | a | 30% | b | 15% |
(1)本次抽樣調查的學生人數及a、b的值.
(2)將條形統(tǒng)計圖補充完整.
(3)若該校共有1500名學生,試估計全校喜歡“拉丁舞蹈”的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=kx﹣3(k≠0)的圖象與x軸,y軸分別交于A,B兩點,與反比例函數y= (x>0)交于C點,且AB=AC,則k的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.
(1)求這個二次函數的解析式;
(2)是否存在點P,使△POC是以OC為底邊的等腰三角形?若存在,求出P點坐標;若不存在,請說明理由;
(3)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形ABCD中,E、F分別是AD、BC的中點,CE、AF分別交BD于G、H兩點.
求證:
(1)四邊形AFCE是平行四邊形;
(2)證明:EG=FH.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:如圖1,⊙O與直線a、b都相切,不論⊙O如何轉動,直線a、b之間的距離始終保持不變(等于⊙O的直徑),我們把具有這一特性的圖形成為“等寬曲線”,圖2是利用圓的這一特性的例子,將等直徑的圓棍放在物體下面,通過圓棍滾動,用較小的力既可以推動物體前進,據說,古埃及人就是利用這樣的方法將巨石推到金字塔頂的. 拓展應用:如圖3所示的弧三角形(也稱為萊洛三角形)也是“等寬曲線”,如圖4,夾在平行線c,d之間的萊洛三角形無論怎么滾動,平行線間的距離始終不變,若直線c,d之間的距離等于2cm,則萊洛三角形的周長為cm.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com