【題目】如圖,在△ABC 中,點(diǎn)OAC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MNBC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F

1)求證:EO=FO;

2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.

【答案】(1)見(jiàn)解析;(2) 當(dāng)O運(yùn)動(dòng)到OA=OC處,四邊形AECF是矩形.理由見(jiàn)解析.

【解析】

1)由于CE平分∠BCA,那么有∠1=2,而MNBC,利用平行線的性質(zhì)有∠1=3,等量代換有∠2=3,于OE=OC,同理OC=OF,于是OE=OF;
2OA=OC,那么可證四邊形AECF是平行四邊形,又CECF分別是∠BCA及其外角的角平分線,易證∠ECF90°,從而可證四邊形AECF是矩形.

(1)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC中點(diǎn)時(shí),四邊形AECF是矩形;理由如下:

如圖所示:


CE平分∠BCA,
∴∠1=2
又∵MNBC,
∴∠1=3,
∴∠3=2
EO=CO,
同理,FO=CO,
EO=FO
(2)當(dāng)O運(yùn)動(dòng)到OA=OC處,四邊形AECF是矩形.理由如下:

OA=OC,
∴四邊形AECF是平行四邊形,
CF是∠BCA的外角平分線,
∴∠4=5,
又∵∠1=2,
∴∠1+5=2+4
又∵∠1+5+2+4=180°,
∴∠2+4=90°,
∴平行四邊形AECF是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AC與BD相交于點(diǎn)O.若 AO=3,∠OBC=30°,求矩形的周長(zhǎng)和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程 x2-6x+m+4=0有兩個(gè)實(shí)數(shù)根 x1x2.

1)求m的取值范圍;

2)若 x1x2滿足x2-2x1=-3 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校學(xué)生的身高情況,王老師隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查,已知抽取的樣本中,男生、女生人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:

組別

身高

身高情況分組表

根據(jù)圖表提供的信息,回答下列問(wèn)題:

1)樣本中,女生身高在組的人數(shù)有_________人;

2)在上面的扇形統(tǒng)計(jì)圖中,表示組的扇形的圓心角是_________°

3)已知該校共有男生800人,女生760人,請(qǐng)估計(jì)該校身高在之間的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)1000名學(xué)生參加了“環(huán)保知識(shí)競(jìng)賽”,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請(qǐng)解答下列問(wèn)題:

成績(jī)分組

頻數(shù)

頻率

50x60

8

0.16

60x70

12

a

70x80

0.5

80x90

3

0.06

90x90

b

c

合計(jì)

1

1)寫(xiě)出,,的值;

2)請(qǐng)估計(jì)這1000名學(xué)生中有多少人的競(jìng)賽成績(jī)不低于70分;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1, , , .點(diǎn)OBC的中點(diǎn)點(diǎn)D沿BAC方向從B運(yùn)動(dòng)到C設(shè)點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng)為,1中某條線段的長(zhǎng)為y,若表示yx的函數(shù)關(guān)系的大致圖象如圖2所示,則這條線段可能是圖1中的( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:∠1+∠2180°,∠B=∠D,CD平分∠ACF

1DEBF平行嗎?請(qǐng)說(shuō)明理由.

2ABCD位置關(guān)系如何?為什么?

3AB平分∠CAE嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有大小兩種貨車(chē),3輛大貨車(chē)與2輛小貨車(chē)一次可以運(yùn)貨21噸,2輛大貨車(chē)與4輛小貨車(chē)一次可以運(yùn)貨22噸.

1)每輛大貨車(chē)和每輛小貨車(chē)一次各可以運(yùn)貨多少?lài)崳?/span>

2)現(xiàn)有這兩種貨車(chē)共10輛,要求一次運(yùn)貨不低于35噸,則其中大貨車(chē)至少多少輛?(用不等式解答)

3)日前有23噸貨物需要運(yùn)輸,欲租用這兩種貨車(chē)運(yùn)送,要求全部貨物一次運(yùn)完且每輛車(chē)必須裝滿.已知每輛大貨車(chē)一次運(yùn)貨租金為300元,每輛小貨車(chē)一次運(yùn)貨租金為200元,請(qǐng)列出所有的運(yùn)輸方案井求出最少租金.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn) 經(jīng)過(guò)點(diǎn)A(﹣1,0),B(5,﹣6),C(6,0)

(1)求拋物線的解析式;

(2)如圖,在直線AB下方的拋物線上是否存在點(diǎn)P使四邊形PACB的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)若點(diǎn)Q為拋物線的對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),試指出△QAB為等腰三角形的點(diǎn)Q一共有幾個(gè)?并請(qǐng)求出其中某一個(gè)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案