【題目】如圖,在等邊三角形ABC中,BD是AC邊上的中線,延長BC到E,使CE=CD.
問:
(1)DB與DE相等嗎?
(2)把BD是AC邊上的中線改成什么條件,還能得到同樣的結(jié)論?
【答案】(1)相等,理由見解析;(2)把BD是AC邊上的中線改為BD是∠ABC的平分線或BD是AC邊上的高,根據(jù)等邊三角形“三線合一”的性質(zhì),還能得出DB=DE.
【解析】
試題分析:(1)由CD=CE,得到∠E=∠EDC,由于∠ACB=60°,求得∠E=30°,于是得到∠E=∠DBC,根據(jù)等腰三角形的判定即可得到結(jié)論;
(2)根據(jù)等邊三角形“三線合一”的性質(zhì),即可得到結(jié)論.
解:(1)相等,
理由:∵CD=CE,
∴∠E=∠EDC,
又∵∠ACB=60°,
∴∠E=30°,
又∵∠DBC=30°,
∴∠E=∠DBC,
∴DB=DE;
(2)把BD是AC邊上的中線改為BD是∠ABC的平分線或BD是AC邊上的高,根據(jù)等邊三角形“三線合一”的性質(zhì),還能得出DB=DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小亮、小芳和兩個(gè)陌生人甲、乙同在如圖所示的地下車庫等電梯,已知兩個(gè)陌生人到1至4層的任意一層出電梯,并設(shè)甲在a層出電梯,乙在b層出電梯.
(1)小明想求出甲、乙二人在同一層樓出電梯的概率;
(2)小亮和小芳打賭說:“若甲、乙在同一層或相鄰樓層出電梯,則小亮勝,否則小芳勝”.該游戲是否公平?若公平,說明理由;若不公平,請修改游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個(gè)三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問題用符號(hào)語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
【深入探究】
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)______,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若______,則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等式(﹣a﹣b)( 。=a2﹣b2中,括號(hào)里應(yīng)填的多項(xiàng)式是( 。
A. a﹣b B. a+b C. ﹣a﹣b D. b﹣a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:△ABC的周長為30cm,把△ABC的邊AC對折,使頂點(diǎn)C和點(diǎn)A重合,折痕交BC邊于點(diǎn)D,交AC邊與點(diǎn)E,連接AD,若AE=4cm,則△ABD的周長是( )
A. 22cm B. 20cm C. 18cm D. 15cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( )
A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臺(tái)球桌的形狀是一個(gè)長方形,當(dāng)母球被擊打后可能在不同的邊上反彈,為了母球最終擊中目標(biāo)球,擊球者需作出不同的設(shè)計(jì),確定擊球的方向,因此,臺(tái)球既復(fù)雜又有趣,臺(tái)球運(yùn)動(dòng)被稱為智慧和技能的較量.
問題1:如圖(1),如果母球P擊中桌邊點(diǎn)A,經(jīng)桌邊反彈擊中相鄰另一條桌邊,再次反彈,那么母球P經(jīng)過的路線BC與PA平行嗎?證明你的判斷.
問題2:在一張簡易球桌ABCD上,如圖(2)所示,目標(biāo)球F、母球E之間有一個(gè)G球阻擋,擊球者想通過擊打母球E先撞球臺(tái)的CD邊,過一次反彈后再撞擊F球,他應(yīng)將E球打到CD邊上的哪一點(diǎn)?
請用尺規(guī)作圖在圖(2)中作出這一點(diǎn).
問題3:如圖(3),在簡易球臺(tái)ABCD上,已知AB=4,BC=3.母球P從角落A以45°角擊出,在桌子邊緣回彈若干次后,最終必將落入 (填A、B、C、D)角落的球袋,在它落入球袋之前,與桌子邊緣共回彈了 次;若AB=100,BC=99,母球P還終將會(huì)落入某個(gè)角落的球袋,則它在落入球袋之前,在桌子邊緣總共回彈了 次.
考點(diǎn):作圖—應(yīng)用與設(shè)計(jì)作圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列圖形規(guī)律:當(dāng)n= 時(shí),圖形“●”的個(gè)數(shù)和“△”的個(gè)數(shù)相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2﹣(m+2)x+2=0
(1)若方程的一個(gè)根為3,求m的值及另一個(gè)根;
(2)若該方程根的判別式的值等于1,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com