如圖,四邊形ABCD為正方形,DEAC,AE=AC,AE與CD相交于F.
求證:CE=CF.
證明:如圖所示,順時針旋轉(zhuǎn)△ADE90°得到△ABG,連接CG.
∵∠ABG=∠ADE=90°+45°=135°,
∴B,G,D在一條直線上,
∴∠ABG=∠CBG=180°-45°=135°,
在△AGB與△CGB中,
AB=BC
∠ABG=∠CBG
BG=BG
,
∴△AGB≌△CGB(SAS),
∴AG=AC=GC=AE,
∴△AGC為等邊三角形,
∵AC⊥BD(正方形的對角線互相垂直),
∴∠AGB=30°,
∴∠EAC=30°,
∵AE=AC,
∴∠AEC=∠ACE=
180°-30°
2
=75°,
又∵∠EFC=∠DFA=45°+30°=75°,
∴CE=CF.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在邊長為4的正方形ABCD中,以點B為圓心,BA為半徑作弧
AC
,F(xiàn)為
AC
上的一動點,過點F作⊙B的切線交AD于點P,交DC于點Q.
(1)求證△DPQ的周長等于正方形ABCD的周長的一半;
(2)分別延長PQ、BC,延長線相交于點M,設(shè)AP長為x,BM長為y,試求出y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知正方形ABCD的邊長為12,E,F(xiàn)分別是AD,CD上的點,且EF=10,∠EBF=45°,則AE的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

正方形ABCD中,E為AB上一點,F(xiàn)為CB延長線上一點,且∠EFB=45°.
(1)求證:AF=CE;
(2)你認為AF與CE有怎樣的位置關(guān)系?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,邊長為5的正方形ABCD的對角線AC、BD相交于點P,頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),頂點C、D都在第一象限.
(1)當點坐標為A(4,0)時,求點D的坐標;
(2)求證:OP平分∠AOB;
(3)直接寫出OP長的取值范圍(不要證明).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD中,ADBC,AB=CD,對角線AC、BD交于點O,AC⊥BD,E、F、G、H分別為AB、BC、CD、DA的中點.
(1)求證:四邊形EFGH為正方形;
(2)若AD=1,BC=3,求正方形EFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

?ABCD中,O是對角線的交點,不能判定這個平行四邊形是正方形的是( 。
A.∠BAD=90°,AB=ADB.∠BAD=90°,AC⊥BD
C.AC⊥BD,AC=BDD.AB=AC,∠BAD=∠BCD

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC、CD邊上,高AG與正方形的邊長相等,連BD分別交AE、AF于點M、N,若EG=4,GF=6,BM=3
2
,則MN的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法中正確的是(  )
A.兩個能夠互相重合的圖形一定成中心對稱
B.成中心對稱的兩個圖形一定能夠互相重合
C.把一個圖形繞著某一點旋轉(zhuǎn)一定的角度,如果它能夠與另一個圖形重合,那么這兩個圖形一定成中心對稱
D.如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,那么這兩個圖形關(guān)于這一點成中心對稱

查看答案和解析>>

同步練習冊答案