【題目】如圖,AB是⊙O直徑,OD⊥弦BC與點F,且交⊙O于點E,且∠AEC=∠ODB

(1)判斷直線BD和⊙O的位置關系,并給出證明;

(2)當tan∠AEC=,BC=8時,求OD的長.

【答案】(1)直線BD和⊙O相切,證明見解析;(2)

【解析】1)因為同弧所對的圓周角相等,所以有∠AEC=ABC,又∠AEC=ODB,所以∠ABC=ODB,OD⊥弦BC,即∠ABC+BOD=90°,則有∠ODB+BOD=90°,即BD垂直于AB,所以BD為切線.
2由垂徑定理可得FB=FC=4,再由三角關系得到DF=,BD可由勾股定理求出,再由DBF∽△ODB,并根據(jù)對應線段成比例求出OD

解:(1)直線BD和⊙O相切

證明:∵∠AEC=ODB,AEC=ABC

∴∠ABC=ODB

ODBC

∴∠DBC+ODB=90°

∴∠DBC+ABC=90°

∴∠DBO=90°

∴直線BD和⊙O相切.

2ODBC

FB=FC=4

tanAEC=tanODB=3:4

BFDF =3:4 ,

DF=

利用勾股定理可求得BD=

通過證明DBF∽△ODB,利用相似比可得ODDB=BDFD

所以求出OD=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(
A.a6÷a2=a3
B.a5﹣a2=a3
C.(3a32=6a9
D.2(a3b)2﹣3(a3b)2=﹣a6b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若0<a<1,則點M(a﹣1,a)在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接勞動周的到來,某校將九(1)50名學生本周的課后勞動時間比上周都延長了10分鐘,則該班學生本周勞動時間的下列數(shù)據(jù)與上周比較不發(fā)生變化的是(  )

A. 平均數(shù) B. 中位數(shù) C. 眾數(shù) D. 方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的三個頂點的坐標分別為、、,Pa,b)是△ABC的邊AC上一點:

(1)將繞原點逆時針旋轉90°得到,請在網(wǎng)格中畫出,旋轉過程中點A所走的路徑長為 .

(2)將△ABC沿一定的方向平移后,點P的對應點為P2a+6,b+2),請在網(wǎng)格畫出上述平移后的△A2B2C2,并寫出點A2、的坐標:A2 ).

(3)若以點O為位似中心,作△A3B3C3與△ABC成2:1的位似,則與點P對應的點P3位似坐標為 直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B在反比例函數(shù)y=(x >0)的圖象上,點A在點B的左側,且OA=OB,點A關于y軸的對稱點為A′,點B關于x軸的對稱點為B′,連接A′B′ 分別交OA,OB于點D,C,若四邊形ABCD的面積為,則點A的坐標為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(3m33n=( 。
A.3mn
B.33m+n
C.27mn
D.27m+n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠BAC=90°,AB=AC.
(1)如圖1,若A,B兩點的坐標分別是A(0,4),B(﹣2,0),求C點的坐標;

(2)如圖2,作∠ABC的角平分線BD,交AC于點D,過C點作CE⊥BD于點E,求證:CE= BD;

(3)如圖3,點P是射線BA上A點右邊一動點,以CP為斜邊作等腰直角△CPF,其中∠F=90°,點Q為∠FPC與∠PFC的角平分線的交點,當點P運動時,點Q是否恒在射線BD上?若在,請證明;若不在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)用甲、乙兩種運輸車將46t抗旱物資運往災區(qū),甲種運輸車載重5t,乙種運輸車載重4t,安排車輛不超過10輛,則甲種運輸車至少應安排(  )
A.4輛
B.5輛
C.6輛
D.7輛

查看答案和解析>>

同步練習冊答案