精英家教網 > 初中數學 > 題目詳情

【題目】我國古代偉大的數學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a=3,b=4,則該矩形的面積為(

A. 20 B. 24 C. D.

【答案】B

【解析】分析: 設小正方形的邊長為x,則矩形的一邊長為(a+x),另一邊為(b+x),根據矩形的面積的即等于兩個三角形的面積之和,也等于長乘以寬,列出方程,化簡再代入a,b的值,得出x2+7x=12,再根據矩形的面積公式,整體代入即可.

詳解: 設小正方形的邊長為x,則矩形的一邊長為(a+x),另一邊為(b+x),根據題意得 :2(ax+x2+bx)=(a+x)(b+x),

化簡得 :ax+x2+bx-ab=0,

又∵ a = 3 , b = 4 ,

x2+7x=12;

∴該矩形的面積為=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24.

故答案為:B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:

(1)當有n張桌子時,兩種擺放方式各能坐多少人?

(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經理,你打算選擇哪種方式來擺放餐桌?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=x2+bx+c經過點(-1,8)并與x軸交于A,B兩點,且點B坐標為(3,0).

(1)求拋物線的表達式;

(2)若拋物線與y軸交于點C,頂點為點P,求CPB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】□ABCD中,EBC的中點,過點EEFAB于點F,延長DC,交FE的延長線于點G,連結DF,已知∠FDG=45°

(1)求證:GD=GF.

(2)已知BC=10, .求 CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖直角坐標系中直線 AB x 軸正半軸、y 軸正半軸交于 AB 兩點,已知 B(0,4),∠BAO=30°,P,Q 分別是線段 OBAB 上的兩個動點,P O 出發(fā)以每秒 3 個單位長度的速度向終點 B 運動,Q B 出發(fā)以每秒 8 個單位長度的速度向終點 A 運動,兩點同時出發(fā),當其中一點到達終點時整個運動結束,設運動時間為 t(秒).

(1)求線段 AB 的長,及點 A 的坐標;

(2)t 為何值時,△BPQ 的面積為

(3) C OA 的中點,連接 QCQP,以 QC,QP 為鄰邊作平行四邊形 PQCD,

t 為何值時,點 D 恰好落在坐標軸上;

②是否存在時間 t 使 x 軸恰好將平行四邊形 PQCD 的面積分成 13 的兩部分,若存在,直接寫出 t 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一次活動中,主辦方共準備了3600盆甲種花和2900盆乙種花,計劃用甲、乙兩種花搭造出A、B兩種園藝造型共50個,搭造要求的花盆數如下表所示:

請問符合要求的搭造方案有幾種?請寫出具體的方案。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】點D,E分別在△ABC的邊AC,BD上,BD,CE交于點F,連接AF,∠FAE=∠FAD,FE=FD.

(1)如圖1,若∠AEF=∠ADF,求證:AE=AD;

(2)如圖2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度數;

(3)在(2)的條件下,如圖3,點G在BE上,∠CFG=∠AFB若AG=6,△ABC的周長為20,求BC長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABEF,則∠A、C、DE滿足的數量關系是(

A. ACDE=360°

B. ADCE

C. ACDE=180°

D. ECDA=90°

查看答案和解析>>

同步練習冊答案