【題目】拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,頂點(diǎn)為D.
(1)寫(xiě)出拋物線的對(duì)稱(chēng)軸及C、D兩點(diǎn)的坐標(biāo)(用含a的代數(shù)式表示)
(2)連接BD并以BD為直徑作⊙M,當(dāng)a=-1時(shí),請(qǐng)判斷⊙M是否經(jīng)過(guò)點(diǎn)C,并說(shuō)明理由;
(3)在(2)題的條件下,點(diǎn)P是拋物線上任意一點(diǎn),過(guò)P作直線垂直于對(duì)稱(chēng)軸,垂足為Q. 那么是否存在這樣的點(diǎn)P,使△PQD與以B、C、D為頂點(diǎn)的三角形相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
【1】 (1)過(guò)點(diǎn)C作CH⊥軸,垂足為H
∵在Rt△OAB中,∠OAB=900,∠BOA=300,AB=2 ∴OB=4,OA=
由折疊知,∠COB=300,OC=OA=
∴∠COH=600,OH=,CH=3 ∴C點(diǎn)坐標(biāo)為(,3)
【2】 (2)∵拋物線(≠0)經(jīng)過(guò)C(,3)、A(,0)兩點(diǎn)
∴解得:
∴此拋物線的解析式為:
【3】 (3)存在. 因?yàn)?/span>的頂點(diǎn)坐標(biāo)為(,3)即為點(diǎn)C,MP⊥軸,設(shè)垂足為N,PN=,因?yàn)?/span>∠BOA=300,所以ON=, ∴P(,)
作PQ⊥CD,垂足為Q,ME⊥CD,垂足為E
把代入得:
∴ M(,),E(,)
同理:Q(,),D(,1)
要使四邊形CDPM為等腰梯形,只需CE=QD
即,解得:,(舍)
∴ P點(diǎn)坐標(biāo)為(,)
∴ 存在滿(mǎn)足條件的點(diǎn)P,使得四邊形CDPM為等腰梯形,此時(shí)P點(diǎn)的坐為(,) (12分)
【解析】
(1)由拋物線y=ax2+2x+3(a<0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,頂點(diǎn)為D,根據(jù)二次函數(shù)的對(duì)稱(chēng)軸方程與頂點(diǎn)坐標(biāo)的求解方法即可求得對(duì)稱(chēng)軸及D點(diǎn)的坐標(biāo),又由當(dāng)x=0時(shí),y=3,求得C點(diǎn)的坐標(biāo);
(2)首先求得點(diǎn)B,C,D的坐標(biāo),然后根據(jù)兩點(diǎn)間的距離公式,求得BC,CD,BD的平方的值,即可得CD2+BC2=DB2,由勾股定理的逆定理,可求得∠DCB=90°,又由直徑所對(duì)的圓周角是直角,可得⊙M是經(jīng)過(guò)點(diǎn)C;
(3)首先求得CD,BC,的長(zhǎng),然后分別從①若點(diǎn)P在對(duì)稱(chēng)軸的左側(cè),且△PQD∽△DCB,②若點(diǎn)P在對(duì)稱(chēng)軸的左側(cè),且△PQD∽△BCD,③若點(diǎn)P在對(duì)稱(chēng)軸的右側(cè),且△PQD∽△DCB,④若點(diǎn)P在對(duì)稱(chēng)軸的右側(cè),且△PQD∽△BCD去分析,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,求得方程,解方程即可求得答案.
解:(1)∵拋物線y=ax2+2x+3(a<0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,頂點(diǎn)為D.
∴對(duì)稱(chēng)軸為:x=-
∵當(dāng)x=0時(shí),y=3,
∴C的坐標(biāo)為:(0,3),
∵D點(diǎn)的縱坐標(biāo)為:y=,
D點(diǎn)的坐標(biāo)為:(-,);…(3分)
(2)⊙M經(jīng)過(guò)點(diǎn)C,
理由:連接BC,
∵a=-1,
∴拋物線為:y=-x2+2x+3,
∴點(diǎn)D(1,4),點(diǎn)B(3,0),點(diǎn)C(0,3),
∴CD2=2,BD2=20,BC2=18,
∴CD2+BC2=DB2,
∴∠DCB=90°,
∵BD是直徑,
∴∠BCD是直徑所對(duì)的圓周角,
∴⊙M是經(jīng)過(guò)點(diǎn)C;(3分)
(3)存在. 因?yàn)?/span>的頂點(diǎn)坐標(biāo)為(,3)即為點(diǎn)C,MP⊥軸,設(shè)垂足為N,PN=,因?yàn)?/span>∠BOA=300,所以ON=, ∴P(,)
作PQ⊥CD,垂足為Q,ME⊥CD,垂足為E
把代入得:
∴ M(,),E(,)
同理:Q(,),D(,1)
要使四邊形CDPM為等腰梯形,只需CE=QD
即,解得:,(舍)
∴ P點(diǎn)坐標(biāo)為(,)
∴ 存在滿(mǎn)足條件的點(diǎn)P,使得四邊形CDPM為等腰梯形,此時(shí)P點(diǎn)的坐為(,) (12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=-1,且經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為B.
(1)若直線y=mx+n經(jīng)過(guò)B,C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱(chēng)軸x=-1 上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,圖形的運(yùn)動(dòng)只改變圖形的位置,不改變圖形的形狀、大小,運(yùn)動(dòng)前后的兩個(gè)圖形全等,翻折就是這樣.如圖1,將△ABC沿AD翻折,使點(diǎn)C落在AB邊上的點(diǎn)C'處,則△ADC≌△ADC'.
嘗試解決:(1)如圖2,△ABC中,∠C=90°,AC=6,BC=8,將△ABC沿AD翻折,使點(diǎn)C落在AB邊上的點(diǎn)C'處,求CD的長(zhǎng).
(2)如圖3,在長(zhǎng)方形ABCD中,AB=8,AD=6,點(diǎn)P在邊AD上,連接BP,將△ABP沿BP翻折,使點(diǎn)A落在點(diǎn)E處,PE、BE分別與CD交于點(diǎn)G、F,且DG=EG.
①求證:PE=DF;
②求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,AD∥BC,AN=CM.
(1)求證:BN=DM;
(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度數(shù)及四邊形ABCD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某住宅小區(qū)在住宅建設(shè)時(shí)留下一塊1798平方米的空地,準(zhǔn)備建一個(gè)矩形的露天游泳池,設(shè)計(jì)如圖所示,游泳池的長(zhǎng)是寬的2倍,在游泳池的前側(cè)留一塊5米寬的空地,其它三側(cè)各保留2米寬的道路及1米寬的綠化帶
(1)請(qǐng)你計(jì)算出游泳池的長(zhǎng)和寬
(2)若游泳池深3米,現(xiàn)要把池底和池壁(共5個(gè)面)都貼上瓷磚,請(qǐng)你計(jì)算要貼瓷磚的總面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將數(shù)軸按如圖所示從某一點(diǎn)開(kāi)始折出一個(gè)等邊,設(shè)點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,若將向右滾動(dòng),則的值等于_____;數(shù)字對(duì)應(yīng)的點(diǎn)將與的頂點(diǎn)______重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品1件和乙商品3件共需240元;購(gòu)進(jìn)甲商品2件和乙商品1件共需130元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿(mǎn)足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并確定最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)、、,請(qǐng)回答如下問(wèn)題:
(1)在坐標(biāo)系內(nèi)描出點(diǎn)的位置:
(2)求出以三點(diǎn)為頂點(diǎn)的三角形的面積;
(3)在軸上是否存在點(diǎn),使以三點(diǎn)為頂點(diǎn)的三角形的面積為10,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,點(diǎn),,,…在射線上,點(diǎn),,,…在射線上,,,,…均為等邊三角形,若,則的邊長(zhǎng)為( )
A.8B.16C.24D.32
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com