如圖,已知點D在△ABC的BC邊上,DE∥AC交AB于E,DF∥AB交AC于F.

1.求證:AE=DF;

2.若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說明理由.

 

 

1.∵DE∥AC,∠ADE=∠DAF,

同理∠DAE=∠FDA,

∵AD=DA,

∴△ADE≌△DAF,

∴AE=DF;(4分)

2.若AD平分∠BAC,四邊形AEDF是菱形,

∵DE∥AC,DF∥AB,

∴四邊形AEDF是平行四邊形,

∴∠DAF=∠FDA.

∴AF=DF.

∴平行四邊形AEDF為菱形.(10分)

解析:(1)利用AAS推出△ADE≌△DAF,再根據(jù)全等三角形的對應(yīng)邊相等得出AE=DF;

(2)先根據(jù)已知中的兩組平行線,可證四邊形DEFA是▱,再利用AD是角平分線,結(jié)合AE∥DF,易證∠DAF=∠FDA,利用等角對等邊,可得AF=DF,從而可證▱AEDF實菱形.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、附加題:如圖,已知點P在△ABC內(nèi)任一點,試說明∠A與∠P的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于點D,∠B=30°.求證:
(1)AD平分∠BAC;
(2)若BD=3
3
,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點O在∠BAC的平分線上,BO⊥AC,CO⊥AB,垂足分別為D、E,求證:OB=OC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點C在以AB為直徑的⊙O上,點D在AB的延長線上,∠BCD=∠A,過點C作CE⊥AB于E,CE=8,cosD=
4
5
,則AC的長為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:已知點C在線段AB的中點,點D、E在線段AB的同側(cè),AD∥CE,AD=CE.
求證:DC∥EB.

查看答案和解析>>

同步練習(xí)冊答案